Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Оценка погрешности метода Монте-Карло

Если поставить задачу определения верхней границы допускаемой ошибки с заданной доверительной вероятностью g, то есть поиска числа d, для которого

,

то получим известную задачу определения доверительного интервала для математичес-кого ожидания генеральной совокупности (см. лекцию 18). Воспользуемся результатами решения этой задачи для следующих случаев:

1) случайная величины Х распределена нормально и известно ее среднее квадратическое отклонение. Тогда из формулы (18.1) получаем: , где п – число испытаний, s - известное среднее квадратическое отклонение, а t – аргумент функции Лапласа, при котором Ф(t) = g/2.

2) Случайная величина Х распределена нормально с неизвестным s. Воспользуемся формулой (18.3), из которой следует, что , где s – исправленное выборочное среднее квадратическое отклонение, а определяется по соответствующей таблице.

3) Если случайная величина распределена по иному закону, то при достаточно большом количестве испытаний (n > 30) можно использовать для оценки d предыдущие формулы, так как при п ®¥ распределение Стьюдента стремится к нормальному, и границы интервалов, полученные по формулам (18.1) и (18.3), различаются незначительно.

 

<== предыдущая лекция | следующая лекция ==>
Моделирование случайных величин методом Монте-Карло (статистических испытаний) | Разыгрывание случайных величин
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 246; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.