Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Механические свойства материалов

 

Из всех свойств, которыми обладают твердые тела, наиболее харак­терными являются механические свойства — прочность, твердость, пластичность, износостойкость и др. Именно благодаря этим свойст­вам твердые тела получили столь широкое практическое применение в качестве конструкционных, строительных, электротехнических, маг­нитных и других материалов, без которых немыслимо развитие мате­риального производства. Рассмотрим некоторые из этих свойств.

 

Диаграмма растяжения


При действии на тело внешней растягивающей силы оно растягивается, и этот процесс отражается на диаграмме растяжения.

 

 

Различают относительное и абсолютное удлинение:

 
 


1. Относительное

 

 
 


2. Абсолютное

 
 

 

 


При этом материал испытывает механическое напряжение

 

 

Связь абсолютного удлинения и механического

       
   
 
 

 


удлинения отражается в законе Гука или

 

 

где k – коэффициент податливости, - коэффициент упругости (модуль Юнга)

Зона ОА носит название зоны упругости (). Здесь материал под­чиняется закону Гука. На рисунке этот участок для большей наглядности показан с отступлением от масштаба. Удли­нения на участке ОА очень малы, и прямая ОА, будучи вы­черченной в масштабе, совпадала с осью ординат. Величина силы, для которой остается справедли­вым закон Гука, зависит от размеров образца и физических свойств материала. Для высококачественных сталей эта величина имеет большее значение. Для таких металлов, как медь, алюминий, сви­нец, она оказывается в несколько раз меньшей.

Зона АВ называется зоной общей текучести, а участок АВ диаграммы — площадкой текучести. Здесь происходит существен­ное изменение длины образца без заметного увеличения нагрузки. Наличие площадки текучести для металлов не является харак­терным. В большинстве случаев при испытании на растяжение и сжатие площадка АВ не обнаруживается.


Зона ВС называется зоной упрочнения. Здесь удлинение образца сопровождается возрастанием нагрузки, но неизмеримо более мед­ленным (в сотни раз), чем на упругом участке. В стадии упрочнения на образце намечается место будущего разрыва и начинает образо­вываться так называемая шейка — местное сужение образца.

По мере растяжения об­разца утонение шейки прогрессирует. Когда от­носительное уменьшение площади сечения срав­няется с относительным возрастанием напряже­ния, сила достигнет максимума. В дальнейшем удлинение образца происходит с уменьшением силы, хотя среднее напряжение в поперечном сечении шей­ки и возрастает. Удлинение образца носит в этом случае местный характер, и поэтому участок кривой CD называется зоной местной текучести. Точка D соответствует разрушению образца. У многих материалов разрушение происходит без заметного образования шейки.

Если испытуемый образец, не доводя до разрушения, разгру­зить, то в процессе разгрузки зависимость между силой и удлинением изобразится прямой KL. Опыт показывает, что эта прямая параллельна прямой ОА. При разгрузке удлинение полностью не исчезает. Оно уменьшается на величину упругой части удлинения (отрезок LM). Отрезок OL представляет собой остаточное удлинение. Его называют также пластическим удлинением, а соответствующую ему деформацию — пластической деформацией. При повторном нагружении образца диаграмма растяжения при­нимает вид прямой LK и далее — кривой KCD, как будто промежуточной разгрузки и не было.

 

 


Чтобы дать количественную оценку описанным выше свойствам материала, перестроим диаграмму растяжения в коорди­натах σ и ε. Эта диаграмма имеет тот же вид, что и диаграмма растяжения, но будет характеризовать уже не свойства образца, а свойства материала. Отметим на диаграм­ме характерные точки и дадим определение соответствующих им число­вых величин. Наибольшее напряже­ние, до которого матери­ал следует закону Гука, называется пределом про­порциональности σп. Величина предела пропорциональности за­висит от той степени точности, с которой начальный участок диаграммы можно рассмат­ривать как прямую.

Упругие свойства материала сохраняются до напряжения, на­зываемого пределом упругости. Под пределом упругости σу пони­мается такое наибольшее напряжение, до которого материал не получает остаточных деформаций. Для того чтобы найти предел упругости, необходимо после каждой дополнительной нагрузки образец разгружать и следить, не образовалась ли остаточная деформация. Так как пластиче­ские деформации в отдельных кристаллах появляются уже в самой ранней стадии нагружения, ясно, что величина предела упругости, как и предела пропорциональности, зависит от требований точно­сти, которые накладываются на производимые замеры.

Следующей характеристикой является предел текучести. Под пределом текучести понимается то напря­жение, при котором происходит рост деформации без заметного увеличения нагрузки. Предел текучести легко поддается определению и является одной из основных механических характеристик материала.

Отношение максимальной силы, которую способен выдержать образец, к его начальной площади поперечного сечения носит назва­ние предела прочности, или временного сопротивления, и обознача­ется через σвр.

 

Пластичность и хрупкость. Твердость

Способность материала получать большие остаточные деформа­ции, не разрушаясь, носит название пластичности. Свойство пла­стичности имеет решающее значение для таких технологических опе­раций, как штамповка, вытяжка, волочение, гибка и др. Мерой пластичности является удлинение δ при разрыве. Чем больше δ, тем более пластичным считается материал. К числу весьма пластичных материалов относятся отожженная медь, алюминий, латунь, малоуглеродистая сталь и др. Менее пластичными являются дюраль и бронза. К числу слабо пла­стичных материалов относятся многие легирован­ные стали.

Противоположным свойству пластичности яв­ляется свойство хрупкости, т. е. способность ма­териала разрушаться без образования заметных остаточных деформаций. Материалы, обладающие этим свойством, называются хрупкими. Для таких материалов величина удлинения при разрыве не превышает 2—5%, а в ряде случаев измеряется долями процента. К хрупким мате­риалам относятся чугун, высокоуглеродистая инструментальная сталь, стекло, кирпич, камни и др. Диаграмма растяжения хруп­ких материалов не имеет площадки текучести и зоны упрочнения.

 


Кривые растяжения материалов: а-хрупкого, б-пластичного

 

 


По-разному ведут себя пластичные и хрупкие материалы и при испытании на сжатие. Испытание на сжатие производится на коротких цилиндрических образцах, располагае­мых между параллельными плитами. Диаграмма сжатия образца имеет вид кривой, показанной на рисунке.

Здесь, как и для растяжения, обнаруживается площадка текучести с последующим переходом к зоне упрочнения. В дальнейшем, од­нако, нагрузка не падает, как при растяжении, а резко возрастает. Происходит это в результате того, что площадь поперечного сечения сжатого образца увеличивается; сам образец вследствие трения на торцах принимает бочкообразную форму. Довести образец пластического материала до разрушения практически не удается. Испытуемый цилиндр сжимается в тонкий диск и дальнейшее испытание ограничивается возможностями машины. Поэтому предел прочности при сжатии для такого рода материалов найден быть не может.

Иначе ведут себя при испы­тании на сжатие хрупкие материалы. Диаграмма сжатия этих материалов сохраняет качественные особенности диаграммы растяжения. Предел прочности хрупкого материала при сжатии определяется так же, как и при растяжении. Разрушение образца происходит с образованием тре­щин по наклонным или продольным плоскостям.

Сопоставление предела прочности хрупких материалов при рас­тяжении с пределом прочности при сжатии показывает, что эти материалы обладают, как правило, более высокими прочност­ными показателями при сжатии, нежели при растяжении. Существуют материалы, способные воспринимать при растяже­нии большие нагрузки, чем при сжатии. Это обычно материалы, имеющие волокнистую структуру, — дерево и некоторые типы пластмасс. Этим свойством обладают и некоторые ме­таллы, например магний.

 

 

Способы измерения твёрдости

 

Под твердостью понимается способность материала противодей­ствовать механическому проникновению в него посторонних тел. Такое определение твердости повторяет, по существу, опре­деление свойств прочности. В материале при вдавливании в него острого предмета возникают местные пластические деформации, со­провождающиеся при дальнейшем увеличении сил местным разру­шением. Поэтому показатель твердости связан с показателями проч­ности и пластичности и зависит от конкретных условий ведения ис­пытания.

Наиболее широкое распространение получили пробы по Бринелю и по Роквеллу. В первом случае в поверхность исследуемой детали вдавливается стальной шарик диаметром 10 мм, во втором — алмазный острый наконечник. По обмеру полученного отпечатка судят о твердости материала. Испытательная лаборатория обычно располагает составленной путем экспериментов переводной табли­цей, при помощи которой можно приближенно по показателю твер­дости определить предел прочности материала. Таким образом, в результате пробы на твердость удается определить прочностные показатели материала, не разрушая детали.

<== предыдущая лекция | следующая лекция ==>
Принципы работы полупроводниковых приборов и их применение | Для каждого материала существует установленная ГОСТом сила вдавливания F
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 1177; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.