Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Композиционные материалы

Композиционные материалы с металлической матрицей

Композиционные материалы состоят из металлической матрицы, упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица свя­зывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту или иную композицию, получили название композиционные ма­териалы.

Схема структуры (а) и армирования непрерывными волокнами (б) композиционных материалов:

1 — зернистый (дисперсно-упрочненный) материал; 2 — дискретный волокни­стый композиционный материал; 3 — непрерывно волокнистый композиционный ма­териал; 4 — непрерывная укладка волокон; 5 — двухмерная укладка волокон; 6,7 — объемная укладка волокон

Композиционные материалы с волокнистым наполни­телем по механизму армирующего действия делят на дискретные и с непрерывным волокном. Дискретные волокна располагаются в матрице хаотично. Диаметр волокон от долей до сотен микрометров. Чем больше отношение длины к диаметру волокна, тем выше степень упрочнения.

Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно арми­ровать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму, по ширине и длине соответствующую конечному материалу. Нередко волокна спле­тают в трехмерные структуры.

Композиционные материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50—100%), модуля упругости, коэффициента жесткости и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жест­кость конструкции при одновременном снижении ее металлоем­кости.

Прочность композиционных материалов опреде­ляется свойствами волокон; матрица в основном должна пере­распределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокон должны быть зна­чительно больше, чем прочность и модуль упругости матрицы. Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.

 

 

  Материал   σВ σ-1   E, ГПа   σВ   E/ γ  
MПа
Бор — алюминий Бор— магний Алюминий — углерод Алюминий — сталь Никель — вольфрам   1300 1300           84,6 100 100 24,40  

 

Композиционные материалы на металлической основе обладают высокой прочностью и жаропрочностью, в то же время они малопластичны. Однако волокна в композиционных материа­лах уменьшают скорость распространения трещин, зарождаю­щихся в матрице, к практически полностью исключают внезапное хрупкое разрушение. Отличительной особенностью одноосных волокнистых композиционных материалов являются анизотропия механических свойств вдоль и поперек волокон и малая чувстги-тельность к концентраторам напряжения.

Анизотропия свойств волокнистых композиционных материа­лов учитывается при конструировании деталей для оптимизации свойств путем согласования поля сопротивления в полями напря­жения.

Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, диборида титана и оксида алюминия значительно повышает жаро­прочность. Особенностью композиционных материалов является малая скорость разупрочнения во времени с повы­шением температуры.

Основным недостатком композиционных материалов с одно- и двумерным армированием является низкое сопротивление межслойному сдвигу и поперечному обрыву. Этого недостатка лишены материалы с объемным армированием.

Дисперсно-упрочненные композиционные материалы. В отличие от волокнистых композиционных материалов в дисперсно-упроч­ненных композиционных материалах матрица является основным элементом, несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций. Высокая прочность достигается при размере частиц 10—500 нм при среднем расстоянии между ними 100—500 нм и равномерном распределении их в матрице. Проч­ность и жаропрочность в зависимости от объемного содержания упрочняющих фаз не подчиняются закону аддитивности.

Использование в качестве упрочняющих фаз стабильных туго­плавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов и редкоземельных металлов), нерастворяю­щихся в матричном металле, позволяет сохранить высокую проч­ность материала. В связи с этим такие материалы чаще применяют как жаропрочные. Дисперсно-упрочненные ком­позиционные материалы могут быть получены на основе большин­ства применяемых в технике металлов и сплавов.

Наиболее широко используют сплавы на основе алюминия — САП (спеченный алюминиевый порошок). САП состоит из алюми­ния и дисперсных чешуек А12О3. Частицы А12О3 эффективно тормозят движение дислокаций и тем самым повышают прочность сплава. Плотность этих материалов равна плотности алюминия, они не уступают ему по коррозионной стойкости и даже могут заменять титан и корро­зионно-стойкие стали при работе в интервале температур 250-500 °С. По длительной прочности они превосходят деформируемые алюминиевые сплавы. Длительная прочность для сплавов САП-1 и САП-2 при 500 °С составляет 45—55 МПа.

Большие перспективы у никелевых дисперсно-упрочненных материалов. Широкое применение получили сплавы ВДУ-1 (никель, упрочненный дву­окисью тория), ВДУ-2 (никель, упрочненный двуокисью гафния) и ВД-3 (матрица Ni + 20 % Cr, упрочненная окисью тория). Эти сплавы обладают высокой жаропрочностью. Дисперсно-упрочненные компози­ционные материалы, так же как волокнистые, стойки к разупроч­нению с повышением температуры и длительности выдержки при данной температуре.

Области применения композиционных материалов не ограни­чены. Они применяются в авиации для высоконагруженных де­талей самолетов (обшивки, лонжеронов, нервюр, панелей и т. д.) и двигателей (лопаток компрессора и турбины и т. д.), в косми­ческой технике для узлов силовых конструкций аппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов, бамперов и т. д., в горной промышленности (буровой инструмент, детали комбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементы сборных конструкций высотных сооружений и т. д.) и в других областях народного хозяйства.

Применение композиционных материалов обеспечивает новый качественный скачок в увеличении мощности двигателей, энерге­тических и транспортных установок, уменьшении массы машин и приборов.

Композиционные материалы с неметаллической матрицей

Композиционные материалы с неметаллической матри­цей нашли широкое применение. В качестве неметаллических мат­риц используют полимерные, углеродные и керамические мате­риалы. Из полимерных матриц наибольшее распространение полу­чили эпоксидная, фенолоформальдегидная и полиимидная. Уголь­ные матрицы коксованные или пироуглеродные получают из син­тетических полимеров, подвергнутых пиролизу. Матрица связы­вает композицию, придавая ей форму. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов, нитридов и др.), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.

Свойства композиционных материалов зависят от состава ком­понентов, их сочетания, количественною соотношения и прочности связи между ними. Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей.

Содержание упрочнителя в ориентированных материалах соста­вляет 60—80%, в неориентированных (с дискретными волок­нами и нитевидными кристаллами) 20—30%. Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композиционного материала. Свойства матрицы опре­деляют прочность композиции при сдвиге и сжатии и сопротивле­ние усталостному разрушению.

По виду упрочнителя композиционные материалы классифи­цируют на стекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты и органоволокниты.

В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Свойства получаются анизотропными. Для работы материала в изделии важно учитывать направление действующих нагрузок. Можно создавать материалы как с изотропными, так и с анизотропными свойствами. Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала.

Применяется укладка упрочнителей из трех, четырех и более нитей. Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут рас­полагаться в осевом, радиальном и окружном направлениях.

Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отрыв и сопротивление сдвигу по сравнению со слоистыми. Система из четырех нитей строится путем расположения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях. Однако создание четырехнаправленных материалов сложнее, чем трехнаправленных.

Схемы армирования композиционных материалов: I - однонаправленная; II - двухнаправленная; III - трехнаправленная; IV - четырехнаправленная.

Укладка во­локон (1 - прямоугольная, 2 - гексаго­нальная, 3 - косоугольная, 4 - с искри­вленными волокнами, 5 - система из n ни­тей)

 

Карбоволокниты

Карбоволокниты (углепласты) представляют собой ком­позиции, состоящие из полимерного связующего (матрицы) и уп­рочнителей в виде углеродных волокон (карбоволокон).

Высокая энергия связи С—С углеродных волокон позволяет им сохранять прочность при очень высоких температурах (в нейтральной и восстановительной средах до 2200°С), а также при низких температурах. От окисления поверхности волокна пре­дохраняют защитными покрытиями. В отличие от стеклянных волокон карбоволокна плохо смачиваются свя­зующим (низкая поверхностная энергия), поэтому их подвергают травлению. При этом увеличивается степень активирования углеродных волокон по содержанию карбоксильной группы на их поверхности. Межслойная прочность при сдвиге углепластиков увеличивается в 1,6—2,5 раза.

Карбоволокниты отличаются высоким статическим и динами­ческим сопротивлением усталости, сохраняют это свой­ство при нормальной и очень низкой температуре (высокая тепло­проводность волокна предотвращает саморазогрев материала за счет внутреннего трения). Они водо- к химически стойкие.

Карбостекловолокниты содержат наряду с угольными стеклян­ные волокна, что удешевляет материал.

 

 

Карбоволокниты с углеродной матрицей. Коксованные мате­риалы получают из обычных полимерных карбоволокнитов, под­вергнутых пиролизу в инертной или восстановительной атмосфере. При температуре 800—1500°С образуются карбонизированные, при 2500—3000°С графитированные карбоволокниты. Для полу­чения пироуглеродных материалов упрочнитель выкладывается по форме изделия и помещается в печь, в которую пропускается газообразный углеводород (метан). При определенном режиме (температуре 1100°С и остаточном давлении 2660 Па) метан раз­лагается и образующийся пиролитический углерод осаждается на волокнах упрочнителя, связывая их.

Образующийся при пиролизе связующего кокс имеет вы­сокую прочность сцепления с углеродным волокном. В связи с этим композиционный материал обладает высокими меха­ническими и абляционными свойствами, стойкостью к термиче­скому удару.

Карбоволокнит с углеродной матрицей типа КУП-ВМ по зна­чениям прочности и ударной вязкости в 5—10 раз превосходит специальные графиты; при нагреве в инертной атмосфере и ваку­уме он сохраняет прочность до 2200°С, на воздухе окисляется при 450 °С и требует защитного покрытия. Коэффициент трения одного карбоволокнита с углеродной матрицей по другому высок (0,35—0,45), а износ мал (0,7—1 мкм на торможение).

Полимерные карбоволокниты используют в судо- и автомоби­лестроении (кузова гоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульные карбоволокниты применяют для изготовления деталей авиационной техники, аппара­туры для химической промышленности, в рентгеновском обору­довании и др.

Карбоволокниты с углеродной матрицей заменяют различные типы графитов. Они применяются для тепловой защиты, дисков авиационных тормозов, химически стойкой аппаратуры.

Бороволокниты

Бороволокниты представляют собой композиции из полимерного связующего и упрочнителя — борных волокон,

Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и моду­лем упругости, теплопроводностью и электропроводимостью. Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей.

Помимо непрерывного борного волокна применяют комплекс­ные боростеклониты, в которых несколько параллельных борных волокон оплетаются стеклонитью, придающей формоустойчивость. Применение боростеклонитей облегчает технологический процесс изготовления материала.

В качестве матриц для получения бороволокнитов исполь­зуют модифицированные эпоксидные и полиамидные связующие. Бороволокниты КМБ-1 и КМБ-1к предназначены для длительной работы при температуре 200°С; КМБ-3 и КМБ-Зк не требуют высокого давления при переработке и могут работать при темпе­ратуре не свыше 100 °С; КМБ-2к работоспособен при 300 °С.

Бороволокниты обладают высокими сопротивлениями уста­лости, они стойки к воздействию радиации, воды, органических растворителей и горючесмазочных материалов.

Изделия из бороволокнитов применяют в авиационной и кос­мической технике (профили, панели, роторы и лопатки компрес­соров, лопасти винтов и трансмиссионные валы вертолетов и т. д.).

 

Органоволокниты

Органоволокниты представляют собой композиционные материалы, состоящие из полимерного связующего и упрочнителей (наполнителей) в виде синтетических волокон. Такие материалы обладают малой массой, сравнительно высокими удельной проч­ностью и жесткостью, стабильны при действии знакопеременных нагрузок и резкой смене температуры. Для синтетических воло­кон потери прочности при текстильной переработке небольшие; они малочувствительны к повреждениям.

В органоволокнитах значения модуля упругости и температур­ных коэффициентов линейного расширения упрочнителя и свя­зующего близки. Происходит диффузия компонентов связующего в волокно и химическое взаимодействие между ними. Структура материала бездефектна. Пористость не превышает 1-3 % (в дру­гих материалах 10-20 %). Отсюда стабильность механических свойств органоволокнитов при резком перепаде температур, дей­ствии ударных и циклических нагрузок. Ударная вязкость высо­кая (400-700 кДж/м2). Недостатком этих материалов является сравнительно низкая прочность при сжатии и высокая ползучесть (особенно для эластичных волокон).

Органоволокниты устойчивы в агрессивных средах и во влаж­ном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая. Большинство органоволокнктов может длительно работать при температуре 100—150°С, а на основе полиимидного связующего и полиоксадиазольных волокон — при 200—300°С.

 

 

Список литературы

 

  1. Авиационное электрорадиоматериаловедение. Коровский Ш. Я., М. «Машиностроение», 1972, стр. 356.
  2. Гусев В. Г., Гусев Ю. М. Электроника: Учеб. пособие для приборостроит. спец. вузов.— 2-е изд., перераб. и доп.— М.: Высш. школа. 1991.— 622с.: ил.
  3. Зуев В. М. Термическая обработка металлов. Учебник для техн. училищ. — 2-е изд., перераб. и доп.— М.: Высш. школа, 1981. — 296 с., ил.
  4. Епифанов Г. И. Физика твердого тела. Учеб. пособие для втузов. Изд. 2-е, перераб. и доп. М., «Высш. школа», 1977. 288 с. с ил.
  5. Касаткин А. С. Основы электротехники: Учебное пособие для сред. ПТУ. – 3-е изд., стер. – М.: Высшая шк., 1986. – 287с.: ил.
  6. Колобнев И. Ф., Крымов В. В., Мельников А. В. Справочник литейщика. Цветное литье из легких сплавов. Изд. 2-е, перераб. И доп. М., “Машиностроение”, 1974, 416с.
  7. Лачин В. И., Савёлов Н. С. Электроника: Учеб. пособие. - Ростов н/Д: изд-во «Феникс», 2000. — 448 с.
  8. Лахтин Ю. М., Леонтьева В. П. Материаловедение: Учебник для высших технических учебных заведений. —3-е изд., перераб. и доп. — М.: Ма­шиностроение, 1990. 528 с.: ил.
  9. Материаловедение: Учебник для высших техни­ческих учебных заведений. Б. Н. Арзамасов, И. И. Сидорин, Г. Ф. Косолапов и др.; Под общ. ред. Б. Н. Арзамасова.—2-е изд., испр. и доп.— М.: Машиностроение, 1986.—384 с., ил.
  10. Новиков И. И. Теория термической обработки металлов: Учебник для вузов. 4-е изд., перераб. и доп.: Металлургия, 1980. 460 с.
  11. Пасынков В. В., Сорокин В. С. Материалы электронной техники: Учебник для студ. вузов по спец. электронной техники. 3-е изд. — СПб.: Издательство «Лань», 2001. — 368 с., ил.
  12. Титце У., Шенк К. Полупроводниковая схемотехника: Справочное руководство. Пер. с нем.-М.: Мир, 1982.-512 с., ил.
  13. Цветное литье. Легкие сплавы. Под ред. Колобнева, М., “Машиностроение”, 1966, 391с.

 

 

<== предыдущая лекция | следующая лекция ==>
Бескислородная керамика | Общая характеристика договора купли-продажи
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 2437; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.042 сек.