Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение систем линейных алгебраических уравнений




2.1. Постановка задачи

Требуется найти решение системы линейных уравнений:

 

или в матричной форме: , где

По правилу Крамера система линейных уравнений имеет единственное решение, если определитель системы отличен от нуля и значение каждого из неизвестных определяется следующим образом: , где – определитель матрицы, получаемой заме-

ной -го столбца матрицы столбцом правых частей .

Непосредственный расчет определителей для больших является очень трудоемким.

Известные в настоящее время многочисленные приближенные методы решения систем линейных алгебраических уравнений распадаются на две большие группы: прямые методы и методы итераций.

Прямые методы всегда гарантируют получение решения, если оно существуют, однако, для больших требуется большое количество операций, и возникает опасность накопления погрешностей.

Этого недостатка лишены итерационные методы, но зато они не всегда сходятся и могут применяться лишь для систем определенных классов.

Норма матрицы является некоторой обобщенной оценкой значений элементов матрицы. Для её вычисления можно использовать следующие выражения:

,

, .

 

2.2. Метод простой итерации

Для того чтобы применить метод простой итерации, необходимо систему уравнений

(1)

с квадратной невырожденной матрицей привести к виду

, (2)

где – квадратная невырожденная матрица с элементами ,
– вектор-столбец неизвестных , – вектор-столбец с элементами , . Существуют различные способы приведения системы (1) к виду (2). Рассмотрим самый простой.

Представим систему в развернутом виде:

(3)

Из первого уравнения системы (3) выразим неизвестную :

из второго уравнения – неизвестную :

и т. д. В результате получим систему:

(4)

Матричная запись системы (4) имеет вид (2). На главной диагонали матрицы находятся нулевые элементы, а остальные элементы вычисляются по формулам:

(5)

Очевидно, что диагональные элементы матрицы должны быть отличны от нуля. Выберем произвольно начальное приближение. Обычно в качестве первого приближения берут или . Подставим начальное приближение в правую часть (4). Вычисляя левые части, получим значения . Продолжая этот процесс дальше, получим последовательность приближений, причем приближение строится следующим образом:

Последняя система представляет собой расчетные формулы метода простой итерации.

Сходимость метода простой итерации. Известно следующее достаточное условие сходимости метода простой итерации.

Если элементы матрицы удовлетворяют условию:

, (6)

то итерационная последовательность сходится к точному решению .Условие (7) называют условием преобладания диагональных элементов матрицы , так как оно означает, что модуль диагонального элемента -ой строки больше суммы модулей остальных элементов этой строки, .

Необходимо помнить, что условие сходимости (6) является лишь достаточным. Его выполнение гарантирует сходимость метода простых итераций, но его невыполнение, вообще говоря, не означает, что метод расходится.

Справедлива следующая оценка погрешности:

, (7)

где . Правую часть оценки (7) легко вычислить после нахождения очередного приближения.Иначе достаточное условие (6) для матрицы может быть переформулирована так: если , то итерационный процесс (6) сходится к точному решению системы.

Критерий окончания. Если требуется найти решение с точностью , то в силу (7) итерационный процесс следует закончить, как только на -ом шаге выполнится неравенство: .

Поэтому в качестве критерия окончания итерационного процесса можно использовать неравенство , где .

Если выполняется условие , то можно пользоваться более простым критерием окончания:

. (8)

В других случаях использование последнего критерия (8) неправомерно и может привести к преждевременному окончанию итерационного процесса.




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 298; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.