КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение систем линейных алгебраических уравнений
2.1. Постановка задачи Требуется найти решение системы линейных уравнений:
или в матричной форме: , где По правилу Крамера система линейных уравнений имеет единственное решение, если определитель системы отличен от нуля и значение каждого из неизвестных определяется следующим образом: , где – определитель матрицы, получаемой заме- ной -го столбца матрицы столбцом правых частей . Непосредственный расчет определителей для больших является очень трудоемким. Известные в настоящее время многочисленные приближенные методы решения систем линейных алгебраических уравнений распадаются на две большие группы: прямые методы и методы итераций. Прямые методы всегда гарантируют получение решения, если оно существуют, однако, для больших требуется большое количество операций, и возникает опасность накопления погрешностей. Этого недостатка лишены итерационные методы, но зато они не всегда сходятся и могут применяться лишь для систем определенных классов. Норма матрицы является некоторой обобщенной оценкой значений элементов матрицы. Для её вычисления можно использовать следующие выражения: , , .
2.2. Метод простой итерации Для того чтобы применить метод простой итерации, необходимо систему уравнений (1) с квадратной невырожденной матрицей привести к виду , (2) где – квадратная невырожденная матрица с элементами , Представим систему в развернутом виде: (3) Из первого уравнения системы (3) выразим неизвестную : из второго уравнения – неизвестную : и т. д. В результате получим систему: (4) Матричная запись системы (4) имеет вид (2). На главной диагонали матрицы находятся нулевые элементы, а остальные элементы вычисляются по формулам: (5) Очевидно, что диагональные элементы матрицы должны быть отличны от нуля. Выберем произвольно начальное приближение. Обычно в качестве первого приближения берут или . Подставим начальное приближение в правую часть (4). Вычисляя левые части, получим значения . Продолжая этот процесс дальше, получим последовательность приближений, причем приближение строится следующим образом: Последняя система представляет собой расчетные формулы метода простой итерации. Сходимость метода простой итерации. Известно следующее достаточное условие сходимости метода простой итерации. Если элементы матрицы удовлетворяют условию: , (6) то итерационная последовательность сходится к точному решению .Условие (7) называют условием преобладания диагональных элементов матрицы , так как оно означает, что модуль диагонального элемента -ой строки больше суммы модулей остальных элементов этой строки, . Необходимо помнить, что условие сходимости (6) является лишь достаточным. Его выполнение гарантирует сходимость метода простых итераций, но его невыполнение, вообще говоря, не означает, что метод расходится. Справедлива следующая оценка погрешности: , (7) где . Правую часть оценки (7) легко вычислить после нахождения очередного приближения.Иначе достаточное условие (6) для матрицы может быть переформулирована так: если , то итерационный процесс (6) сходится к точному решению системы. Критерий окончания. Если требуется найти решение с точностью , то в силу (7) итерационный процесс следует закончить, как только на -ом шаге выполнится неравенство: . Поэтому в качестве критерия окончания итерационного процесса можно использовать неравенство , где . Если выполняется условие , то можно пользоваться более простым критерием окончания: . (8) В других случаях использование последнего критерия (8) неправомерно и может привести к преждевременному окончанию итерационного процесса.
Дата добавления: 2014-01-11; Просмотров: 298; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |