КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод Ньютона для системы нелинейных уравнений
В основе метода Ньютона для системы уравнений лежит использование разложения функций в ряд Тейлора, причем члены, содержащие вторые производные (и производные более высоких порядков), отбрасываются. Пусть приближенные значения неизвестных системы (например, полученные на предыдущей итерации) равны соответственно . Задача состоит в нахождении приращений (поправок) к этим значениям , благодаря которым решение исходной системы запишется в виде: . Проведем разложение левых частей уравнений исходной системы в ряд Тэйлора, ограничиваясь лишь линейными членами относительно приращений: Поскольку левые части этих выражений должны обращаться в нуль, то можно приравнять к нулю и правые части:
в матричном виде: Значения и их производные вычисляются при . Определителем последней системы является якобиан: . Для существования единственного решения системы якобиан должен быть отличным от нуля на каждой итерации. Таким образом, итерационный процесс решения системы нелинейных уравнений методом Ньютона состоит в определении приращений к значениям неизвестных на каждой итерации. Счет прекращается, если все приращения становятся малыми по абсолютной величине: . В методе Ньютона также важен удачный выбор начального приближения для обеспечения хорошей сходимости. Сходимость ухудшается с увеличением числа уравнений системы. Итак, за расчетную формулу примем или . Сходимость метода. Теорема. Пусть в некоторой окрестности решения системы нелинейных уравнений функции дважды непрерывно дифференцируемы и определитель матрицы Якоби не равен нулю. Тогда найдется такая малая – окрестность решения , что при произвольном выборе начального приближения из этой окрестности, итерационная последовательность метода Ньютона не выходит за пределы окрестности и справедлива оценка: , – метод сходится с квадратичной скоростью. В качестве примера можно рассмотреть использование метода Ньютона для решения системы двух уравнений: , где и – непрерывно дифференцируемые функции. Пусть начальные значения неизвестных равны . После разложения исходной системы в ряд Тэйлора можно получить: Предположим, что якобиан системы при и отличен от нуля: . Тогда значения и можно найти, используя матричный способ следующим образом: .
Вычислив значения и можно найти и следующим образом: . Величины, стоящие в правой части, вычисляются при и . Критерий окончания. Будем считать, что заданная точность достигнута, если или . Пример. Методом Ньютона решить систему двух уравнений: с точностью до 0,001.
Дата добавления: 2014-01-11; Просмотров: 362; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |