КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Модульная единица 8. Обмен углеводов
Лекция 5. Обмен углеводов. Аннотация. Рассматриваются биохимические реакции первичного синтеза углеводов у С₃- и С₄-растений, взаимопревращения моносахаридов – триоз, эритрозы, пентоз и гексоз. Излагаются молекулярные механизмы синтеза и распада олиго- и полисахаридов. Даются необходимые сведения о ферментах, катализирующих реакции синтеза и превращений углеводов.
Ключевые слова: цикл Кальвина, цикл Хетча-Слэка, рибулозодифосфат-карбоксилаза, фосфопируваткарбоксилаза, фотосинтетически активная радиация (ФАР), С₃- и С₄-растения, гликолиз, цикл Кребса, пентозофосфатный цикл, фотофосфорилирование, окислительное фосфорилирование, нуклеозиддифосфатпро-изводные моносахаридов (УДФ-глюкоза, УДФ-галактоза и др.), сахарозосинтетаза, гликозилтрансферазы, амилазы, инулаза, целлюлозосинтетаза, пектиназы и пртопектиназы.
Рассматриваемые вопросы: 1. Первичный синтез углеводов у С₃- и С₄-растений. 2. Механизмы образования и взаимопревращения триоз, эритрозы, пентоз и гексоз. 3. Синтез и распад олигосахаридов и полисахаридов.
Цели и задачи изучения модульной единицы. Изучить механизмы синтеза, превращений и распада моносахаридов, олигосахаридов и полисахаридов, а также особенности действия ферментов, катализирующих эти реакции. Научить студентов использовать знания по обмену углеводов для прогнозирования биохимических процессов при обосновании технологий выращивания сельскохозяйственных культур и оценке качества растительной продукции.
Первичный синтез углеводов у С₃- и С₄-растений. В ходе темновых реакций фотосинтеза происходит эндергонический процесс образования углеводов из диоксида углерода (СО2) и воды, в котором в качестве энергетических источников используются продукты световых реакций НАДФ×Н и АТФ. Последовательность химических превращений в темновой стадии фотосинтеза была выяснена американскими биохимиками М Кальвином, А. Бенсоном и Д. Басхемом в 1946-53 г.г. и впоследствии названа циклом Кальвина вследствие того, что открытые ими превращения имели циклический механизм. Все эти реакции протекают в строме – жидкой дисперсионной среде хлоропластов. Для установления первичных продуктов, которые образуются при фотосинтезе из СО2 и Н2О, М. Кальвин и его сотрудники использовали культуру водорослей хлореллы, в которую вводили на свету меченный 14С СО2 в виде Н214СО3 и через короткие промежутки времени отбирали пробы клеток суспензии водорослей и фиксировали их метанолом. После этого из клеток хлореллы выделяли углеводы и другие органические вещества и в них определяли наличие радиоактивной метки, обусловленной включением в эти продукты 14С. При этом было установлено, что при коротких экспозициях (0,1-5 сек.) клеток водорослей в суспензионной среде, содержащей 14СО2, большая часть радиоактивной метки обнаруживалась в карбоксильной группе 3-фосфоглицериновой кислоты. Последнее свидетельствовало о том, что фосфоглицериновая кислота является первичным продуктом фотосинтеза. В дальнейшем с использованием радиоактивной метки в виде 14С и 32Р было показано, что первичным акцептором, с которым взаимодействует СО2 служит рибулозо-1,5-дифосфат. И эту реакцию катализирует фермент рибулозодифосфаткарбоксилаза (4.1.1.39). Учитывая, что для образования карбоксильной группы кроме СО2 требуется еще молекула воды, первую реакцию цикла Кельвина можно записать следующим образом:
Диоксид углерода в ходе реакции взаимодействует с енольной формой рибулозо-1,5-дифосфата, при этом образуется неустойчивый продукт – β–кетокислота, который под действием фермента гидролизуется, превращаясь в 3-фосфоглицериновую кислоту. При этом радиоактивный углерод обнаруживается в карбоксильной группе одной из двух синтезирующихся молекул 3-фосфоглицериновой кислоты. Фермент рибулозодифосфаткарбоксилаза в большом количестве содержится в хлоропластах растений (до 16 % от общего количества белков), а также в клетках зелёных и пурпурных бактерий. Он состоит из восьми пар неидентичных субъединиц и имеет большую молекулярную массу (560000). Для проявления каталитической активности этого фермента необходимо присутствие катионов Mg2+. Рибулозодифосфаткарбоксилаза аллостерически активируется фруктозо-6-фосфатом и аллостерически ингибируется фруктозо-1,6-дифос-фатом, которые образуются при последующих превращениях в цикле Кальвина 3-фосфоглицериновой кислоты, являющейся продуктом действия данного фермента. Образовавшаяся под действием рибулозодифосфаткарбоксилазы 3-фосфоглицериновая кислота в последующих реакциях восстанавливается до альдегида. Вначале молекула 3-фосфоглицериновой кислоты активируется путём фосфорилирования с участием АТФ. Эту реакцию катализирует фермент фосфоглицераткиназа (2.7.2.3), включающий 355 аминокислотных остатков и активируемый катионами Мg2+: СООН О ½ фосфоглицерат- ‖ (2) Н–С–ОН + АТФ ¾¾¾¾¾® С– О~(Р) + АДФ ½ киназа | СН2О(Р) Н–С–ОН | СН2О(Р) 3-фосфоглицериновая 1,3-дифосфоглицериновая кислота кислота Продукт реакции 1,3-дифосфоглицериновая кислота представляет собой макроэргическое соединение, имеющее высокое значение потенциала переноса фосфатной группы (при гидролизе DGºˈ= -49 кДж×моль-1), в связи с чем оно уже легко подвергается восстановлению в следующей реакции под действием фермента триозофосфат-дегидрогеназы (1.2.1.9) с участием восстановленной формы динуклеотида НАДФ×Н: О О (3) ‖ триозофосфат- ‖ С–О~(Р) дегидрогеназа С–Н ½ + НАДФ·Н + Н+ ¾¾¾¾¾® + НАДФ+ + Н3РО4 Н–С–ОН Н–С–ОН | ½ СН2О(Р) СН2О(Р) 1,3-дифосфоглице- 3-фосфоглице- риновая кислота риновый альдегид
В ходе восстановительной реакции происходит синтез 3-фосфоглицерино-вого альдегида и отщепление от 1,3-дифосфоглицериновой кислоты минерального фосфата. Участвующие в синтезе 3-фосфоглицеринового альдегида АТФ и НАДФ×Н являются продуктами световой стадии фотосинтеза. Как было показано ранее, в результате связывания одной молекулы СО2 в первой реакции цикла Кальвина образуются 2 молекулы 3-фосфо-глицериновой кислоты, которые в ходе реакций 2 и 3 превращаются в две молекулы 3-фосфоглицеринового альдегида, а последние довольно легко изомеризуются в фосфодиоксиацетон. Реакцию изомеризации катализирует фермент триозофосфатизомераза (5.3.1.1):
Н ½ С=О триозофосфат- СН2ОН (4) | ¾¾¾¾® | Н–С–ОН ¬¾¾¾¾ С=О | изомераза | СН2О(Р) СН2О(Р) 3-фосфоглице- фосфодиокси- риновый альдегид ацетон
Представленная реакция легко обратима, так как сопровождается небольшим изменением свободной энергии. Фермент триозофосфатизомераза отличается высокой молярной активностью (2800 кат×моль-1 фермента для превращения в фосфодиоксиацетон). Образовавшиеся триозофосфаты не накапливаются в хлоропластах. Под действием фермента альдолазы (4.1.2.13) они конденсируются, превращаясь во фруктозо-1,6-дифосфат: Н СН2О(Р) (5) СН2ОН С=О С=О | | альдолаза ½ С=О + Н–С–ОН ¾¾® НО–С–Н | | | СН2О(Р) СН2О(Р) Н–С–ОН фосфодиокси- 3-фосфоглицери- | ацетон новый альдегид Н–С–ОН | СН2О(Р) фруктозо-1,6-дифосфат
После этого от фруктозо-1,6-дифосфата происходит гидролитическое отщепление остатка фосфорной кислоты. Реакцию катализирует фермент фруктозо-1,6-дифосфатаза (3.1.3.11). В ходе этой реакции фруктозодифосфат превращается во фруктозо-6-фосфат: СН2О(Р) СН2ОН (6) | | С=О фруктозо- С=О | 1,6-дифос- | НО–С–Н + Н2О ¾¾¾® НО–С–Н + Н3РО4 | фатаза | Н–С–ОН Н–С–ОН | | Н–С–ОН Н–С–ОН | | СН2О(Р) СН2О(Р) фруктозо-1,6-дифосфат фрутозо-6-фосфат
Фруктозо-1,6-дифосфатаза – активируемый светом фермент. Его активирование происходит с участием восстановленного под действием света ферредоксина, который совместно со специфическим белком переводит фруктозо-1,6-дифосфатазу в активное состояние. От действия этого фермента зависит интенсивность включения СО2 в первой реакции цикла Кальвина. Если активность фруктозо-1,6-дифосфатазы низкая, то повышается концентрация фруктозо-1,6-дифосфата, который аллостерически ингибирует фермент рибулозодифосфаткарбоксилазу, вследствие чего понижается скорость первой реакции цикла Кальвина, катализируемой данным ферментом. А если фруктозо-1,6-дифосфатаза находится в активной форме, то повышается концентрация фруктозо-6-фосфата, являющегося аллостерическим активатором рибулозодифосфаткарбоксилазы. При таких условиях связывание СО2 проходит с максимальной скоростью. На следующем этапе фотосинтеза фермент транскетолаза (2.2.1.1) катализирует перенос концевого двууглеродного радикала, содержащего кетонную группу, от фруктозо-6-фосфата на 3-фосфоглицериновый альдегид, который образуется в результате присоединения к рибулозо-1,5-дифосфату ещё одной молекулы СО2 и повторения реакций 2 и 3. В результате взаимодействия гексозы и триозы синтезируются новые углеводные продукты – эритрозо-4-фосфат и ксилулозо-5фосфат: Н (7) СН2ОН Н ½ | ½ С=О СН₂ОН С=О С=О | | | | транскето- Н–С–ОН + С=О НО–С–Н + Н–С–ОН ¾¾® | | | | лаза Н–С–ОН НО–С–Н Н–С–ОН СН2О(Р) | | | СН2О(Р) Н–С–ОН Н–С–ОН 3-фосфоглицери- эритрозо-4- | | новый альдегид фосфат СН2О(Р) СН2О(Р) ксилулозо-5- фруктозо-6-фосфат фосфат
Ещё одна молекула 3-фосфоглицеринового альдегида, синтезированная в результате связывания второй молекулы СО2, изомеризуется далее в реакции 4 в фосфодиоксиацетон, который затем соединяется с эритрозо-4-фосфатом, образуя седогептулозо-1,7-дифосфат. Эту реакцию катализирует фермент трансальдолаза (2.2.1.2): Н СН2О(Р) (8) ½ | СН2О(Р) С=О С=О | | трансальдо- | С=О + Н–С–ОН ¾¾¾® НО–С–Н | | лаза | СН2ОН Н–С–ОН Н–С–ОН фосфодиоксиацетон | | СН2О(Р) Н–С–ОН эритрозо-4-фосфат | Н–С–ОН | СН2О(Р) седогептулозо- 1,7-дифосфат В следующей реакции происходит гидролиз седогептулозо-1,7-ди-фосфата, который катализирует специфическая фосфатаза. В ходе реакции
от седогептулозо-1,7-дифосфата отщепляется остаток фосфорной кислоты и таким образом осуществляется синтез седогептулозо-7-фосфата:
После этого снова вступает в действие фермент транскетолаза, катализирующий перенос двууглероного радикала с кетогруппой от седогептулозо-7-фосфата на 3-фосфоглицериновый альдегид, который синтезируется за счёт связывания в первой реакции цикла Кальвина уже третьей молекулы СО2. Продукты реакции, катализируемой транскетолазой, – пятиуглеродные производные моносахаридов ксилулозо-5-фосфат и рибозо-5-фосфат:
(10) Н СН2ОН Н ½ | ½ СН2ОН С=О С=О С=О | | | | транскетолаза С=О Н–С–ОН НО–С–Н + Н–С–ОН ¾¾¾® | + | | | НО–С–Н Н–С–ОН Н–С–ОН СН2О(Р) | | | 3-фосфоглицери- Н–С–ОН Н–С–ОН Н–С–ОН новый альдегид | | | СН2О(Р) СН2О(Р) Н–С–ОН ксилулозо-5- рибозо-5- | фосфат фосфат СН2О(Р) седогептулозо-7- фосфат
В последующих реакциях цикла Кальвина осуществляется изоме-ризация фосфорнокислых производных пентоз, которая обеспечивает регенерацию первичного акцептора СО2 – рибулозо-1,5-дифосфата. Образовавшиеся в реакциях 7 и10 молекулы ксилулозо-5-фосфата превращаются в рибулозо-5-фосфат под действием фермента рибулозофосфатэпимеразы (5.1.3.1), который способен изменять на противоположную пространственную ориентацию водорода и гидроксильной группы у третьего углеродного атома пентозы:
В ходе указанных выше тринадцати реакций происходит включение в состав углеводных производных трёх молекул СО2 и потребление трёх молекул первичного акцептора рибулозо-1,5-дифосфата, при этом осуществляется синтез шести молекул 3-фосфоглицеринового альдегида, из которых пять затрачиваются на регенерацию трёх молекул рибулозо-1,5-дифосфата и одна молекула 3-фосфоглицеринового альдегида остаётся как продукт темновой стадии фотосинтеза. Её синтез сопряжён с использованием биоэнергетических продуктов световой стадии фотосинтеза АТФ и НАДФ×Н. Восстановленные динуклеотиды НАДФ×Н участвуют в реакции 3 цикла Кальвина, которая в ходе синтеза 6 молекул 3-фосфоглицери-нового альдегида повторяется 6 раз и, следовательно, в этих реакциях потребляются 6 молекул восстановленных динуклеотидов НАДФ×Н. АТФ участвует в реакции 2, которая, как и реакция 3, повторяется 6 раз, и в реакции 13, которая при синтезе 3 молекул первичного акцептора СО2 рибулозо-1,5-дифосфата повторяется 3 раза. Всего при связывании 3 молекул СО2 и восстановлении их до уровня 3-фосфоглицеринового альдегида потребляется 9 молекул АТФ. Однако 3-фосфоглицериновый альдегид не накапливается в хлоропластах, он используется для синтеза гексозы. Часть молекул 3-фосфогли-церинового альдегида изомеризуется в фосфодиоксиацетон, который далее под действием альдолазы конденсируется с оставшимися молекулами 3-фосфоглицеринового альдегида и, таким образом, осуществляется синтез фруктозо-1,6-дифосфата. После гидролиза фруктозодифосфата с участием фруктозо-1,6-дифосфатазы образуется фруктозо-6-фосфат. Если учесть, что для синтеза фруктозо-6-фосфата потребуется связывание 6 молекул СО2 в первой реакции цикла Кальвина и все выше указанные превращения, связанные с синтезом одной молекулы 3-фосфоглицеринового альдегида, должны повториться еще раз, суммарное уравнение темновой стадии фотосинтеза может быть записано в следующем виде: ферменты 6СО2 + 11Н2О + 18АТФ + 12НАДФ×Н + 12Н+ ¾® фруктозо-6-фосфат + 18АДФ + + 12НАДФ+ + 17Н3РО4 цикла Кальвина
В опытах с использованием СО2, меченного 14С, было показано, что в течение 1-3 минут после экспозиции растений в атмосфере 14СО2 все промежуточные продукты цикла Кальвина насыщаются меченым углеродом, а при более длительных экспозициях 14С обнаруживается уже в составе сахарозы, крахмала, органических кислот, аминокислот, липидов, белков и других органических веществ хлоропластов. Следует отметить, что из всех реакций цикла Кальвина только первая и последняя (13) специфичны для фотосинтезирующих клеток, тогда как другие реакции могут протекать в любых других клетках и тканях фотосинтезирующих организмов в ходе синтеза, распада и превращений углеводов. При этом промежуточные метаболиты, образующиеся в цикле Кальвина, выводятся из этого цикла и потребляются для синтеза различных органических веществ в хлоропластах и листьях растений. Конечный продукт цикла Кальвина фруктозо-6-фосфат также включается в биосинтетические реакции, происходящие в фотосинтезирующих тканях, или превращается в транспортные формы, которые по сосудам флоэмы поступают в акцепторные органы растений. Фотодыхание. Изучение механизма действия фермента рибулозоди-фосфаткарбоксилазы показало, что конкурентным ингибитором этого фермента является кислород, который конкурирует с СО2 при взаимодействии последнего с каталитическим центром ферментного белка. Поэтому при высокой концентрации кислорода и низкой концентрации СО2 в воздухе карбоксилирующая активность рибулозодифосфат-карбоксилазы понижается, но усиливается её оксигеназная способность, вследствие чего к рибулозо-1,5- дифосфату присоединяется не СО2, а кислород, в результате происходит расщепление рибулозо-1,5-дифосфата на 3-фосфоглицериновую и фосфогликолевую кислоты:
Образовавшаяся фосфогликолевая кислота под действием специфической
Гликолевая кислота подвергается дальнейшим превращениям в пероксисомах – субклеточных органеллах, функциональная деятельность которых тесно связана с процессами, происходящими в хлоропластах и митахондриях. В пероксисомах гликолевая кислота окисляется с участием фермента гликолатоксидазы и превращается в глиоксиловую кислоту:
Продукт данной реакции Н2О2 разлагается под действием каталазы на воду и кислород, а глиоксиловая кислота аминируется от глутаминовой кислоты, превращаясь в аминокислоту глицин:
Аминокислота глицин не накапливается в пероксисомах, а транспортируется из пероксисом в митохондрии, где участвует в синтезе аминокислоты серина (рис. …). Эту реакцию катализируют ферменты глициндекарбоксилаза и серинтрансгидрооксиметилаза, имеющая в активном центре в качестве кофермента тетрагидрофолиевую кислоту. В ходе реакции синтеза серина происходит также высвобождение СО2 и NH3, а также образование НАД×Н:
Образовавшийся в митахондриях серин может далее транспортироваться в пероксисомы и под действием аминотрансферазы передавать аминогруппу на молекулы пировиноградной кислоты. В результате этой реакции серин превращается в гидроксипировиноградную кислоту, а пировиноградная кислота в аминокислоту аланин:
Продукт этой реакции глицериновая кислота может затем в хлоропластах фосфорилироваться и, превращаясь в 3-фосфоглицериновую кислоту, включаться в реакции цикла Кальвина:
Таким образом, при взаимодействии пероксисом, хлоропластов и митохондрий в фотосинтезирующих клетках растений осуществляется процесс, связанный с поглощением О2 и высвобождением СО2, который называют фотодыханием. Кислород принимает участие в первой реакции, где он связывается вместо СО2 с молекулами рибулозо-1,5-дифосфата, и при окислении фосфогликолевой кислоты в пероксисомах. Выделение СО2 происходит в митохондриях в ходе синтеза аминокислоты серина. В связи с тем, что при фотодыхании осуществляются превращения гликолевой кислоты – продукта разложения первичного акцептора СО2, синтезируемого в реакциях цикла Кальвина, за счёт таких превращений уменьшается количество связанной в ходе фотосинтеза СО2, в результате чего понижается урожайность растений. В опытах установлено, что в естественных условиях произрастания при повышенных температурах, снижающих концентрацию СО2 в хлоропластах, продуктивность растений вследствие интенсивного фотодыхания может понижаться на 30-40 %. Исходя из этих данных, учёными–биохимиками сформулирована важнейшая задача для селекционеров и генетиков по выведению новых сортов сельскохозяйственных культур с пониженной скоростью фотодыхания. Одним из главных направлений такой работы является оптимизация структуры каталитического центра фермента рибулозодифосфаткарбоксилазы, направленная на усиление карбоксилазной и ослабление оксигеназной активности этого фермента. Для решения указанной проблемы большие надежды возлагаются на применение методов генетической и белковой инженерии.
Дата добавления: 2014-01-11; Просмотров: 551; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |