Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Механическая вращательная подсистема

Механическая поступательная система

Электрическая подсистема

Математические модели на макроуровне

Большинство технических подсистем характеризуется фазовыми переменными. Фазовые переменные образуют вектор неизвестных в ММ технической системы. Для каждой физической подсистемы характерны свои законы, однако для простейших элементов форма выражающих их уравнений оказывается одинаковой. Ниже приводятся в качестве примера электрическая и механическая подсистемы.

Фазовыми переменными электрической подсистемы являются токи I и напряжения U. Запишем уравнения трех типов простейших элементов.

  1. Уравнение сопротивления (закон Ома) I = U/R, где R — электрическое сопротивление.
  2. Уравнение емкости I = C(dU/dt), где С — электрическая емкость.
  3. Уравнение индуктивности U = L(dI/dt), где L — электрическая индуктивность.

Фазовые переменные механической поступательной подсистемы — силы F и скорости V — соответственно аналоги токов и напряжений. Запишем уравнения трех типов простейших элементов:

  1. Уравнение вязкого трения F = V/RM, где RM = 1/k — аналог электрического сопротивления; к — коэффициент вязкого трения.
  2. Уравнение массы (уравнение второго закона Ньютона) F = mа = См (dV/dt), где а = dV/dt — ускорение; См = m — аналог электрической емкости (масса элемента).
  3. Уравнение пружины F = kх, где х — перемещение; k — жесткость пружины.

Продифференцируем обе части уравнения по времени: dF/dt = kV, или V = LM(dF/dt), где LM = 1/k — аналог электрической индуктивности.

Аналогичное компонентное уравнение можно получить из закона Гука для элемента, у которого учитывается сжимаемость, т.е. Р = Е(Δl/l), где Р — напряжение в элементе; Е — модуль Юнга; l — длина элемента; А1 — изменение длины элемента. Умножив обе части этого уравнения на площадь S поперечного сечения элемента и продифференцировав по времени, получим d(PS)/dt = (ESA)(dΔl/dt); d(Δl)/dt = V; PS = F; dF/dt = (ES/I)V, или V=LM=(dF/dt); LM = 1/(ES).

Фазовые переменные этой подсистемы — моменты сил М и угловые скорости ω — соответственно, аналоги токов и напряжений. Запишем уравнения трех типов простейших элементов.

  1. Уравнение вязкого трения вращения М = ω/Rвр, где Rвр – 1/k — аналог электрического сопротивления; k — коэффициент трения вращения.
  2. Основное уравнение динамики вращательного движения М = J(dω/dt), где J — аналог электрической емкости (момент инерции элемента).
  3. Уравнение кручения бруса с круглым поперечным сечением М = GJpθ, где М — крутящий момент; G — модуль сдвига; Jp — полярный момент инерции сечения; θ = d/dl — относительный угол закручивания.

Рассмотрим брус конечной длины, тогда θ = /l, где — угол закручивания; l — длина бруса. Продифференцируем обе части уравнения по времени, т. е. dM/dt – (GJр/l)(d/dt), или если учесть, что (d/dt) = ω и Lвр = l/(GJp), то ω = Lвр (dM/dt), где Lвр — аналог электрической индуктивности (вращательная гибкость).

Аналогичное компонентное уравнение можно получить для спиральной пружины, М = с, где с — жесткость пружины. Продифференцировав обе части уравнения по времени, получим ω = Lвp(dM/dt); Lвp = l/c.

<== предыдущая лекция | следующая лекция ==>
 | 
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 464; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.