Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Требования к параметру оптимизации




Параметр оптимизации – это признак, по которому мы хотим оптимизировать процесс. Он должен быть количественным, задаваться числом. Мы должны уметь его намерять при любой возможной комбинации выбранных уровней факторов. Множество значений, кото­рые может принимать параметр оптимизации, будем на­зывать областью его определения. Области определения могут быть непрерывными и дискретными, ограниченны­ми и неограниченными. Например, выход реакции – это параметр оптимизации с непрерывной ограниченной об­ластью определения. Он может изменяться в интервале от 0 до 100%. Число бракованных изделий, число зерен на шлифе сплава, число кровяных телец в пробе крови – вот примеры параметров с дискретной областью определе­ния, ограниченной снизу.

Уметь измерять параметр оптимизации - это значит располагать подходящий прибором. В ряде случаев та­кого прибора может не существовать или он слишком до­рог. Если нет способа количественного измерения резуль­тата, то приходится воспользоваться приемом, называе­мым ранжированием (ранговым подходом). При этом пара­метрам оптимизации присваиваются оценки – ранги по заранее выбранной шкале: двухбалльной, пятибалльной и т.п. Ранговый параметр имеет дискретную ограниченную область определения. В простейшем случае область содержит два значения (да, нет; хорошо, плохо). Это может соответствовать, например, годной продукции и браку.

Ранг – это количественная оценка параметра оптимизации, но она носит условный (субъективный) характер. Мы ставим в соответствие качественному признаку неко­торое число – ранг.

Для каждого физически измеряемого параметра опти­мизации можно построить ранговый аналог. Потребность в построении такого аналога возникает, если имеющиеся в распоряжении исследователя численные характеристи­ки неточны или неизвестен способ построения удовлет­ворительных численных оценок. При прочих равных ус­ловиях всегда нужно отдавать предпочтение физическому измерению, так как ранговый подход менее чувствителен и с его помощью трудно изучать тонкие эффекты.

Другие примеры рангового подхода: определение чемпиона мира по фигурному катанию или гимнастике, дегустация вин, сравнение произведений искусства и т. д. Или, если хотите, из области химии: сравнение продук­тов по цвету, прозрачности, форме кристаллов.

Следующее требование: параметр оптимизации должен выражаться одним числом. Иногда это получается естественно, как регистрация показания прибора. Например, скорость движения машины определяется чис­лом на спидометре. Чаще приходится производить некоторые вычисления. Так бывает при расчете выхода реакции. В химии часто требуется получать продукт с заданным отношением компонентов, например, A:B = 3:2. Один из возможных вариантов решения подобных задач состоит в том, чтобы выразить отношение одним числом (1,5) и в качестве параметра оптимизации пользоваться значениями отклонений (или квадратов отклонений) от этого числа.

Еще одно требований, связанное с количественной при­родой параметра оптимизации, – однозначность в статистическом смысле. Заданному набору значений фак­торов должно соответствовать одно с точностью до ошибки эксперимента значение параметра оптимизации. Однако обратное неверно: одному и тому же значении параметра могут соответствовать разные наборы значений факторов.

Для успешного достижения цели исследования не­обходимо, чтобы параметр оптимизации действительно оценивал эффективность функционирования системы в заранее выбранном смысле. Это требование является главным, определяющим корректность постановки задачи.

Представление об эффективности не остается постоян­ным в ходе исследования. Оно меняется по мере накопле­ния информации и в зависимости от достигнутых резуль­татов. Это приводит к последовательному подходу при выборе параметра оптимизации. Так, например, на первых стадиях исследования технологических процессов в качест­ве параметра оптимизации часто используется выход про­дукта. Однако в дальнейшем, когда возможность повышения выхода исчерпана, нас начинают интересовать такие параметры, как себестоимость, чистота продукта и т. д.

Говоря об оценке эффективности функционирования системы, важно помнить, что речь идет о системе в целом. Часто система состоит из ряда подсистем, каждая из ко­торых может оцениваться своим локальным параметром оптимизации. При этом оптимальность каждой из под­систем по своему параметру оптимизации не оптимальности системы в целом.

Мало иметь эффективный параметр оптими­зации. Надо еще, чтобы он был эффективным в статис­тическом смысле. Фактически это требо­вание сводится к выбору параметра оптимизации, кото­рый определяется с наибольшей возможной точностью. (Если и эта точность недостаточна, тогда приходится обращаться к увеличению числа повторных опытов.)

Пусть, например, нас интересует исследование проч­ностных характеристик некоторого сплава. В качестве меры прочности можно использовать как прочность на разрыв, так и макротвердость. Поскольку эти характерис­тики функционально связаны, то с точки зрения эффек­тивности они эквивалентны. Однако точность измерения первой характеристика существенно выше, чем второй. Требование статистической эффективности заставляет отдать предпочтение прочности на разрыв.

Следующее требование к параметру оптимизации – требование универсальности или полноты. Под универсальностью параметра оптимизации понимает­ся его способность всесторонне характеризовать объект. В частности, технологические параметры оптимизации не­достаточно универсальны: они не учитывают экономи­ку. Универсальностью обладают, например, обобщенные параметры оптимизации, Которые строятся как функции от нескольких частных параметров.

Желательно, чтобы параметр оптимизации имел физический смысл, был простым и легко вычисляемым.

Требование физического смысла связано с последу­ющей интерпретацией результатов эксперимента. Не пред­ставляет труда объяснить, что значит максимум извлече­ния, максимум содержания ценного компонента. Эти и по­добные им технологические параметры оптимизации имеют ясный физический смысл, но иногда для них может не выполняться, например, требование статистической эф­фективности. Тогда рекомендуется переходить к пре­образованию параметра оптимизации.

Второе требование часто также оказывается весьма существенным. Для процессов разделения термодина­мические параметры оптимизации более универсальны. Однако на практике ими пользуются мало: их расчет до­вольно труден.

Пожалуй, из этих двух требований первое является более существенным, потому что часто удается найти иде­альную характеристику системы и сравнить ее с реальной характеристикой. Иногда при этом целесообразно нор­мировать параметр с тем, чтобы он принимал значения от нуля до единицы.

Кроме высказанных, требований и пожеланий при вы­боре параметра оптимизации нужно еще иметь в виду, что параметр оптимизации в некоторой степени оказывает влия­ние на вид математической модели исследуемого объекта. Экономические параметры, в силу их аддитивной природы, легче представляются простыми функциями, чем физико-химические показатели. Температура плавления сплава является, как известно, сложной, многоэкстремальной характеристикой состава, тогда как стоимость сплава зависит от состава линейно.




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 368; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.