КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Конструкции зубчатых колес
Конструктивные формы колес в значительной мере определяются их размерами (преимущественно диаметром), видом производства (единичное, серийное и др.) и способом соединения с валом (насадные колеса и шестерни-валы, изготовленные заодно с валом). Рис. 20.38. Конструкции колес Диаметр колес, объем (вид) производства и возможности предприятия-изготовителя предопределяют способ получения заготовок. Колеса небольших диаметров (менее 100—150 мм) изготовляют обычно цельными из штампованных заготовок без углублений (рис. 20.38, а). Колеса большего диаметра (до 400 — 500 мм) выполняют (для облегчения) с углублениями и отверстиями (рис. 20.38, б). В единичном и мелкосерийном производстве заготовки таких колес получают из сортового проката или поковок, полученных свободной ковкой (см. рис. 20.38, б), а в крупносерийном и массовом производствах — штамповкой (рис. 20.38, в). Колеса больших диаметров (свыше 400 — 500 мм) изготовляют сварными (рис. 20.38, г) в единичном и мелкосерийном производстве и литыми (рис. 20.38, д) в крупносерийном и массовом производстве. Зубчатый венец изготовляют заодно целое с валом (шестерня-вал), если толщина обода в месте, ослабленном шпоночным пазом, будет меньше 2,5 т (рис. 20.38, е, ж), а также при высоких требованиях к точности центрирования колеса на валу. Зубчатые колеса устанавливают с фиксацией в радиальном и осевом направлениях. В радиальном направлении зубчатые колеса фиксируют посадкой, которую назначают в зависимости от величины передаваемой нагрузки и частоты разборки. При небольших нагрузках и частых разборках применяют переходные посадки H 7 /k 6, Н7/т6 и др., при которых в соединении возможен как небольшой натяг, так и некоторый зазор. Для передачи вращающего момента в этом случае используют шпонки, шлицы и штифты. При редких разборках применяют посадки Н7/п6 и Н7/р6. Колеса с указанными посадками должны фиксироваться в осевом направлении пружинными кольцами, установочными винтами или распорными втулками, гайками и др. При передаче высоких вращающих моментов, а также при работе в условиях вибраций (высокоскоростные передачи) зубчатые колеса устанавливают на валах на прессовых посадках H7/r6, H7/t6, H7/u6. и др., при которых натяг в соединении находится в пределах (0,0002-0,002) dB, где dB - диаметр вала. В этом случае не требуется использовать шпонки и шлицы для передачи вращающего момента. Для общего ознакомления с конструкцией зубчатых передач на рис. 20.39 показана коробка передач. Вращающий момент Рис. 20.39. Коробка передач с ведомого шкива 1 ременной передачи через вал 9 передается на зубчатое колесо 7 (соединенное с валом с помощью шпонки 13) и далее через блок колес 16 на выходной вал 15. Блок 16 может перемещаться (с помощью рукоятки) вдоль оси вала 15 по шлицам и входить в зацепление также с колесом 10 или 6. В результате выходной вал может иметь три различные ступенчато изменяемые частоты вращения (в зависимости от передаточного отношения пары колес). Колеса 6, 7 и 10, а также шкив соединены с валом с помощью шпонок 2 и 13, их осевое положение зафиксировано с помощью крышек 4 и 12 через кольца (втулки) 8 и 11 и подшипники 5 и 14 — опоры вращающегося вала. Шкив зафиксирован в осевом направлении с помощью шайбы 3. Для упрощения сборки и изготовления корпус коробки имеет два горизонтальных разъема, в плоскости которых лежат оси валов. Для повышения долговечности колес и подшипников применено картерное смазывание. Смазочный материал (индустриальные масла И-5А, И-8А и И-12А и др.) заливается в корпус так, чтобы погруженные в него колеса обеспечили бы устойчивое смазывание зацепления и подшипников. Пример. Спроектировать прямозубую цилиндрическую передачу одноступенчатого редуктора при следующих параметрах: Т1* = 50 Н • м; n = 1000 об/мин; п2 — 250 об/мин. Ресурс работы передачи 1 год, работа двухсменная с коэффициентом часовой загрузки vч = 0,5. Передача нереверсивная, нагрузка с малыми толчками (коэффициент режима кр =1,2). Решение. 1. Вычисляем расчетный вращающий момент T1=kpT1 *= 1,2*50=60 Н*м. 2. Определяем передаточное отношение передачи i = n1/n2 = 1000/250= 4. 3. В качестве материала колес принимаем сталь 40Х с термообработкой рабочих поверхностей ТВЧ до твердости HRС 45 — 50; твердость сердцевины НВ 250 300. 4. Определим допускаемые контактные напряжения: а. Предел контактной выносливости стали 40Х для выбранной термообработки, соответствующий базовому числу циклов, находим, используя соотношение из табл. 20.4: МПа б. Базовое число циклов определяем путем линейной интерполяции по табл. 20.5 для нижнего предела твердости рабочих поверхностей зубьев HRC 45:
в. Вычисляем фактическую продолжительность работы в часах в течение одного года (300 рабочих дней) при работе в две смены по 7 ч с коэффициентом v4 = 0,5: t = 300*7 *2*0,5 = 2100 ч и по формуле (20.33) находим фактическое (суммарное) число циклов нагружения (NFE — NHE): для шестерни
для колеса (i = и)
г. По формулам на с. 360 определяем коэффициенты долговечности: для шестерни так как для колеса д. Предел контактной выносливости поверхностей зубьев, для шестерни МПа для колеса МПа
е. По формуле (20.35) при SH = 1,2 и произведении ZRZvKLKxH = 1 находим предварительное значение допускаемого контактного напряжения: для шестерни МПа; для колеса МПа. 5. По формуле (20.30) находим ориентировочное значение диаметра начальной окружности шестерни, принимая предварительно (см. табл. 20.1); (см. табл. 20.2): мм
Так как при вычислении допускаемых контактных напряжений и диаметра шестерни принимали предварительные значения расчетных коэффициентов, то найденное значение dwl уточняют путем повторного расчета (одного или нескольких) с уточненными значениями коэффициентов ZR,..., КхН, KHv,..., (см. рекомендации в справочной литературе или данные на с. 359). Расчеты проводят до тех пор, пока значения dwl для двух последовательных приближений не будут отличаться более чем на 5-8%. Обычно второе приближение обеспечивает расчету надлежащую точность. 6. Ограничиваясь данными предварительного расчета и принимая = 18, определим приближенное значение расчетного модуля Округляем полученное значение до ближайшего большего стандартного значения т = 2,5 (ГОСТ 9563-60). 7. Проверим прочность зубьев по напряжению изгиба: а. Предел выносливости зубьев при изгибе, соответствующий базовому числу циклов NF0 = 4 • 106, для принятой обработки стали по табл. 20.3 Flim = 600 МПа. б. Принимая NFE1 = NHE1 и NFE2 = NHE2, вычислим коэффициенты долговечности. Так как NFEl > NFO и NFEi > NFO, то принимаем KFL1 = KFL2= 1. в. Находим пределы выносливости, соответствующие фактическому числу циклов нагружений (см. с. 359): = 600 • 1 = 600 МПа. г. По формуле (20.32) определяем допускаемое напряжение изгиба, принимая YR = 1,05; Ys = 1,08 - 0,16 lg 2,5 1,03; KxF 1; SF -=1,4 для поковок 1,03 • 1 = 463 МПа. 8. Используя зависимость (20.25) и связь между вращающим моментом и окружной силой, найдем соотношение для определения напряжений изгиба в зубе шестерни
По графикам на рис. 20.31 находим YF = 4,23; определяем окружную скорость м/с
и из табл. 20.2 принимаем KFv = Kv = 1,15. Коэффициент = 1,08 при симметричном расположении шестерни. Учитывая, что для прямозубой передачи = 1, и полагая, что вся нагрузка воспринимается одной парой зубьев (= 1), вычисляем МПа Следовательно, условие прочности выполняется. 9. Далее, при т = 2,5 мм, = 18, х1 = х2 = 0, и= 4 4 по формулам, приведенным на с. 328, вычисляют размеры колес. ГЛАВА 21
Дата добавления: 2014-01-11; Просмотров: 1150; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |