КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Числовые характеристики статистического распределения
Одна из задач математической статистики: по имеющейся выборке оценить значения числовых характеристик исследуемой случайной величины. Определение 1. Выборочным средним называется среднее арифметическое значений случайной величины, принимаемых в выборке: , (1) где xi – варианты, ni - частоты. Замечание. Выборочное среднее служит для оценки математического ожидания исследуемой случайной величины. В дальнейшем будет рассмотрен вопрос, насколько точной является такая оценка. Определение 2. Выборочной дисперсией называется , (2) а выборочным средним квадратическим отклонением – (3) Так же, как в теории случайных величин, можно доказать, что справедлива следующая формула для вычисления выборочной дисперсии: . (4) Пример 1. Найдем числовые характеристики выборки, заданной статистическим рядом
Другими характеристиками вариационного ряда являются: - мода М0 – варианта, имеющая наибольшую частоту (в предыдущем примере М0 = 5). - медиана те - варианта, которая делит вариационный ряд на две части, равные по числу вариант. Если число вариант нечетно (n = 2 k + 1), то me = xk+ 1, а при четном n = 2 k . В частности, в примере 1 Оценки начальных и центральных моментов (так называемые эмпирические моменты) определяются аналогично соответствующим теоретическим моментам: - начальным эмпирическим моментом порядка k называется . (5) В частности, , то есть начальный эмпирический момент первого порядка равен выборочному среднему. - центральным эмпирическим моментом порядка k называется . (6) В частности, , то есть центральный эмпирический момент второго порядка равен выборочной дисперсии.
Дата добавления: 2014-01-11; Просмотров: 398; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |