Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Эпюр поверхности. Изображая поверхность в ортогональных проекциях, обычно строят эпюр тех линий или точек , которые определяют единственно возможную форму поверхности

Рассмотрим представителей семейства линейчатых поверхностей.

Линейчатая поверхность вполне определена, если известны три ее направляющие. Однако, в некоторых случаях достаточно знать расположение только одной направляющей и вершины.

 

Зададим неподвижную точку S (вершину) и направляющую k по которой скользит образующая b.

 
 


· S

 
 


b k

A

 

Положение образующей b проходящей через точку А, как и через любую другую точку направляющей k однозначно задает поверхность. В данном случае коническую.

На эпюре коническая поверхность может быть задана так

Формула поверхности F{î (S,k) (îi É S, îi Ç k) ý

 

· S 2

 

b 2

 

A2

к2

 

 

· S 1

 

b 1

 

 
 


к1

S1 -A1 горизонтальная проекция

A1 построенной произвольной

образующей конической поверхности.

 

 

Если направляющая представляет собой ломаную линию, то поверхность становится пирамидальной и относится к гранным линейчатым поверхностям.

 

 
 


S

 
 


b

A k

 

На практике редко приходится изображать коническую или пирамидальную поверхность. Гораздо чаще изображают тела - конус или пирамиду.

 

 

Если вершина поверхности удалена в бесконечность, то все образующие пересекающиеся с направляющей параллельны друг-другу. Когда направляющая кривая линия - поверхность носит название цилиндрической, а когда она ломаная, то поверхность будет призматической. Таким образом цилиндрическая поверхность это частный случай конической поверхности, а призматическая поверхность частный случай пирамидальной.

       
 
   
 

 

 


На эпюре цилиндрическая поверхность может быть задана так

 
 


î2

 
 


u2

 

 

А2

 

 

 


u1 î1

 

А 1

Формула поверхности F íî (î, u;î Ç u) (îi ççî, îi Ç u)ý.

 

<== предыдущая лекция | следующая лекция ==>
Если необходимо найти точку пересечения перпендикуляра с плоскостью, то СМ задачу на пересечение прямой с плоскостью | И плоскостью параллелизма
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 336; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.