Ранее было определено понятие подпространства и установлено, что подпространство в свою очередь является пространством.
Для подпространства сохраняют смысл понятия полноты, линейной независимости,
базиса и размерности.
25°. Если EV (подпространство), то dim E ≤ dim V.
◀ Линейно зависимый набор в E будет таковым и в V, поэтому максимальное количество линейно независимых векторов в E не превышает максимального количества линейно независимых векторов в V. ▶
26°. Если EV и dim E = dim V, то E ≡ V. Доказать самостоятельно.
Базис подпространства всегда можно дополнить до базиса пространства, но (как иллюстрирует картинка) из данного базиса пространства не всегда можно выделить базис подпространства.
27°. Линейная оболочка ℒявляется подпространством и dimℒ ≤ k.
Доказать самостоятельно.
28°. Линейная оболочка ℒ– подпространство, натянутое на – это наименьшее подпространство, содержащее эти векторы. Доказать самостоятельно.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление