Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы демодуляции в ЦРРС




Лекция

Под методами приема понимают математические алгоритмы обработки сигнала с целью определения символа, переданного источником сообщения. Под приемником понимается устройство, реализующее некоторый метод (алгоритм) приема. Демодулятор – основа приемника – является одним из наиболее сложных узлов ЦРСП, в значительной степени определяющим показатели качества системы передачи в целом.

ЦСП являются синхронными системами связи, в которых на приемной стороне известны начало и конец каждой посылки сигнала. Эта информация используется для повышения помехоустойчивости приема при всех видах модуляции, поскольку синхронность работы приемника и передатчика позволяет применять оптимальные методы приема. Синхронность работы приемника достигается либо передачей вместе с сигналом специальных синхронизирующих колебаний, либо соответствующей обработкой самого сигнала, который всегда содержит информацию о начале и конце посылки.

Краткий анализ методов приема начнем с рассмотрения структуры приемника сигналов 2-АМ (см.рисунок 5.1).

Сигнал поступает на вход детектора через полосовой фильтр промежуточной частоты, полосу пропускания которого выбирают с учетом длительности тактового интервала Т и нестабильностей частоты возбудителя передатчика и гетеродинов приемника. После детектора сигнал поступает на ФНЧ с полосой пропускания 1/Т, оптимальной с точки зрения достижения максимальной помехоустойчивости приема информации. Далее сигнал подается на пороговое устройство (ПУ), порог срабатывания которого устанавливается на уровне, соответствующем принятым градациям амплитуды несущей с учетом теоретической оценки вероятности ошибки при использовании того или иного способа обработки сигнала в решающем устройстве (РУ). Необходимость применения РУ определяется тем обстоятельством, что сигналы на выходе как ФНЧ, так и ПУ отличаются от передаваемых, прежде всего из-за воздействия шумов и помех, поэтому необходим специальный алгоритм восстановления передающегося искаженного помехами сигнала.

Возможные алгоритмы работы РУ можно разделить на асинхронные и синхронные. При асинхронных алгоритмах положение границ тактовых интервалов не восстанавливается, а решение о передаваемых символах принимается на основании измерения временных интервалов между двумя последовательными фронтами сигнала, образующихся на выходе ПУ.

 

Рисунок 5.1 – Структурная схема приемника сигналов АМ

 

 

Рисунок 5.2 – Иллюстрация принципа построения когерентного демодулятора ФМ – сигналов

 

Характерным признаком синхронных РУ является наличие в их составе систем тактовой синхронизации (СТС), осуществляющих восстановление тактовых моментов принимаемого сигнала. Как правило, такое восстановление выполняется путем усреднения временных положений фронтов сигнала. Наиболее распространенными алгоритмами принятия решения в синхронных РУ являются интегральный прием и прием со стробированием (метод укороченного контакта). При интегральном приеме входной сигнал интегрируется за время каждого тактового интервала, результат интегрирования (напряжение) сравнивается с определенным образом выбранными пороговыми уровнями, что приводит к принятию решения относительно переданного на данном интервале символа. При этом на вход РУ обычно подается сигнал непосредственно с выхода детектора, поскольку функции ФНЧ выполняет собственно интегратор РУ.

На приеме по методу стробирования используется тот факт, что наиболее устойчивой и наименее уязвимой, с точки зрения помех, является центральная часть принятой посылки. В моменты времени, расположенные посредине между тактовыми моментами, схема синхронизации вырабатывает специальные стробирующие импульсы. В зависимости от уровня сигнала в момент появления стробирующего импульса определяется состояние принятой элементарной посылки. Этот метод приема обеспечивает правильную регистрацию импульсов при значительных искажениях их краев.

Анализ помехоустойчивости упомянутых способов приема сигналов 2-АМ показывает, что по эффективности РУ с интегральным приемом и приемом со стробированием практически совпадают. При сравнении синхронных и асинхронных РУ установлено, что при точной синхронизации синхронные РУ обеспечивают на 3дБ большую помехоустойчивость, причем оптимальной оказывается эквивалентная полоса пропускания ФНЧ, равная 1/Т.

Основной операцией во всех типах приемников сигналов ОФМ является операция интегрирования произведения сигнала и весовой функции в течение интервала Т, причем всегда Т> τ, где τ - длительность элементарной посылки. Интервал интегрирования Т обычно выбирают кратным величине 2πf, где f - частота несущей). Это обеспечивает оптимальную фильтрацию сигнала при произвольных фазах несущей и весовой функции, т.е. опорного колебания.

Известны и применяются три способа приема сигналов ОФМ: когерентный, корреляционный и автокорреляционный, перечисленные в порядке уменьшения помехоустойчивости по отношению к флуктуационной помехе.

Когерентное (синхронное) детектирование, осуществляемое при идеальной синхронизации по несущей частоте, является оптимальным методом приема сигналов ОФМ, т.к. при флуктуационных помехах он обеспечивает максимально возможную (потенциальную) помехоустой-чивость. Этот метод реализуется в схеме (см.рисунок 5.2), содержащей перемножитель, генератор (Г) когерентного колебания, интегратор со сбросом в момент t0=T и решающее устройство.

Однако реализация достоинств этого метода зависит от решения задачи формирования когерентного опорного напряжения, поскольку синхронное детектирование (перемножение) осуществляется в фазовом детекторе, где принимаемый ФМ сигнал взаимодействует с синхронным и синфазным с ним опорным напряжением.

В реальных системах когерентное опорное напряжение получают путем соответствующей обработки самого принимаемого сигнала в схеме восстановления когерентной несущей (ВКН), а вместо идеального интегратора со сбросом используют ФНЧ с полосой пропускания, примерно равной 1,2 В. В качестве РУ используется регенератор бинарного сигнала в состав которого входят цепи выделения сигнала тактовой частоты. Решение о том, какой сигнал передавался (0 или 1), принимается в середине К-го тактового интервала. Максимальная помехоустойчивость достигается при этом выбором параметров фильтров и коррекцией искажений тракта.

 




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 544; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.