Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Аналого-цифровой ствол




Структурная схема цифрового ствола

Лекция

Схема антенно-фидерного тракта

 

Волны с ортогональной поляризацией подводят к приемопередающей антенне РРС либо по одному фидеру, выполненному в виде круглого волновода, либо по двум волноводам эллиптического (иногда прямоугольного) сечения. В первом случае разделение этих волн выполняет поляризационный селектор. В диапазонах 2 ГГц и ниже фидером служит коаксиальный кабель, поскольку поперечные размеры волноводов на этих частотах велики. В диапазонах 4,6 и 8 ГГц применяют круглый волновод диаметром d=70мм. Основной тип волны – Н11. В волноводе диаметром 70 мм на частоте 4 ГГц кроме Н11может распространяться волна типа Е01; на частоте 6 ГГц к ним добавляются волны Е11, Н01, Н21, Н31, а на частоте 8 ГГц и другие волны высших типов. Такой волновод называют многоволновым. Одноволновый режим работы можно получить, уменьшив d. В эллиптическом волноводе основной тип волны с Н11, в прямоугольном – Н10. Размер поперечного сечения этих волноводов выбирают, исходя из условия одноволновой работы для каждого частотного диапазона. Из эллиптических и прямоугольных волноводов выполняют, как правило, только короткие участки фидера.

Неоднородности круглого волновода в виде эллиптичности поперечного сечения поворачивают плоскость поляризации поля на некоторый угол θ в. Из-за поворота плоскости поляризации появилась кроссполяризованная составляющая Ег*. Она является помехой для сигналов с горизонтальной поляризацией Ег. В фидерах РРЛ принято компенсировать кроссполяризованную волну с помощью корректора эллиптичности (КЭ).

Для разделения волн разной поляризации в волноводах устанавливают поляризационные селекторы (ПС), для согласования волноводов разного сечения – плавные волноводные переходы (ПВ).

Антенно-фидерный тракт с АДЭ для работы на волнах двух поляризаций в диапазоне 6 ГГц (см.рисунок 8.5а) включает вертикальный участок на круглом биметаллическом волноводе (КВБ) и два горизонтальных участка на эллиптических гибких волноводах (ЭВГ). Обычно РРС оснащают монтажными комплектами КВБ длиной 5…120 мм и монтажными комплектами ЭВГ 1,5…30 м, позволяющими наращивать необходимую длину фидера.

 

Рисунок 8.5 – Схемы АФТ для диапазона 6 ГГц с АДЭ (а), РПА (б)

 

Монтажный комплект ЭВГ содержит арматуру (концевые заделки) для стыковки ЭВГ с прямоугольным волноводом. Назначение вспомогательных устройств КЭ, ФП, ПС, ГВ И ВСШ пояснено выше. Поскольку облучатель АДЭ герметичен, то гермовставки ГВ1 установлены только снизу. Они выполнены на волноводе прямоугольного сечения и имеют штуцер для подачи воздуха. Вертикальный волновод соединен с облучателем АДЭ посредством двух плавных изгибов ПИ по 45 0. Эти изгибы увеличивают уровень волн высших типов (Е11 и Н12), поэтому рядом установлен заграждающий фильтр, состоящий из двух идентичных волноводных переходов ПВ1 и ПВ2 круглого сечения 70/43 мм. Переход ПВ1 плавно уменьшает диаметр волновода до 43 мм, а ПВ2 включен ему навстречу. Волновод диаметром 43 мм на частоте 6 ГГц является двухволновым, поэтому стык двух ПВ пропускает только волны двух типов Н11 и Е01. Последнюю поглощает ФП. В диапазоне 6 ГГц ПС имеет вход в виде круглого волновода диаметром 43 мм. Поэтому перед ним включен ПВ3, идентичный ПВ1. Замыкает вертикальный участок поглощающая нагрузка R, устраняющая резонансные явления.

В диапазоне 8 ГГц схема АФТ такая же, но с другими переходами ПВ1 – ПВ3, ПС и ЭВГ. В этом диапазоне двухволновый волновод имеет d=32 мм. Поэтому применены ПВ 70/32 мм и вход ПС имеет d= 32 мм. Размеры поперечного сечения ЭВГ падают с ростом частоты.

В диапазоне 4 ГГц в круглом волноводе d=70 мм волны Е11 и Н12 не распространяются, а вход ПС имеет d=70 мм, поэтому исключены ПВ1 – ПВ3. Но при этом ФП рекомендуют устанавливать ближе к антенне, до КЭ.

С РПА фидер соединяют (см.рисунок 8.5б) с помощью плавного перехода ПВ4. Со стороны РПА он имеет квадратное сечение 72·72 мм, со стороны волновода – круглое d=70 мм. В фидере установлена верхняя герметизирующая вставка ГВ2 на круглом волноводе, так как облучатель РПА не герметичен; ПВ1 и ПВ2 не нужны, поскольку трасса круглого волновода без изгибов. Начиная со входа ФП, АФТ имеет ту же схему, что и на рисунке 8.4а. Короткие АФТ выполняют полностью на ЭВГ.

Основные параметры АФТ. Приемный фидер ослабляет сигнал и ухудшает отношение сигнал-шум на входе приемника. Так же влияет передающий фидер, уменьшая ЭИИМ.

Коэффициент полезного действия передающего (приемного) фидера

η п=10-0,1a фп,

где

a ф.п =a ВУ +a 1l1+a 2l2;

a ф.п – потери энергии основной волны в передающем АФТ;

a ВУ – ослабление, вносимое вспомогательными устройствами;

l1и l2 – длина вертикального и горизонтального участков фидера с погонными потерями a 1и a 2 соответственно.

 

 

Цель: изучить принципы организации цифровых стволов на ЦРРЛ,

изучение методов модуляции и демодуляции в ЦРРЛ, а также ознакомление с современным оборудованием ЦРРЛ.

 

 

Широкополосный ствол РРЛ, предназначенный для передачи сигналов в цифровой форме, называют цифровым стволом. На рисунке 8.1а показана структурная схема оконечной станции ЦРРЛ, на рисунке 8.1б -структурная схема промежуточной станции, на рисунке 8.1в структурная схема устройства сопряжения УС.

На оконечной станции линейный цифровой сигнал ЛЦС в коде стыка (например, HDB-3) поступает на вход устройства сопряжения УС, задачей которого является преобразование ЛЦС к виду, удобному для передачи по РРЛ. В модуляторе МД производится модуляция сигнала промежуточной частоты по одному из параметров (частота, фаза, либо амплитуда и фаза).

Промодулированный сигнал ПЧ в передатчике ПД переносится в рабо- чую область частот, усиливается и затем излучается антенной. Передатчики и приемники выполняют по таким же схемам, как и для аналоговых РРЛ. В обратном направлении сигнал, принятый антенной, усиливается и переносится на ПЧ в приемнике ПР. Затем с выхода демодулятора ДМ цифровой сигнал подается на устройство сопряжения, где формируется линейный цифровой сигнал.

В состав промежуточной станции входят регенераторы Р, задачей которых является восстановление временных и амплитудных соотношений в цифровом сигнале. Благодаря этому исключается накопление шумов вдоль радиорелейной линии. Промежуточная станция может работать в режиме ретрансляции без регенерации сигналов. Очевидно, что в этом случае происходит явление накопления шумов.

Рассмотрим схему устройства сопряжения УС (см.рисунок 9.1 в). На вход УС поступает линейный цифровой сигнал ЛЦС по кабельной соединительной линии от аппаратуры систем передачи, например, ИКМ-120. В регенераторе Р1 ЛЦС восстанавливается и подается на преобразователь кода ПК1. В этом преобразователе линейный цифровой сигнал преобразуется в бинарный однополярный (как правило, положительной полярности). Кроме того, в ПК удаляется избыточная информация из ЛЦС, введенная в него для улучшения статистических свойств. Например, если ЛЦС поступает в коде HDB-3, то из него удаляются вставки типа 000V и B00V.

На выходе ПК1 формируется цифровой сигнал в коде NRZ, чем обеспечивается минимальная ширина полосы частот сигнала на выходе модулятора МД.

Скремблер СКР предназначен для улучшения статистических свойств цифрового сигнала. Дело в том, что при появлении в цифровом сигнале длинных серий нулей или единиц ухудшается работа канала тактовой синхронизации, что приводит к увеличению коэффициента ошибок. Кроме того, при наличии в ЦС регулярных последовательностей спектр сигнала на выходе передатчика сосредотачивается в узкой полосе частот, что ведет к росту перекрестных помех между стволами РРЛ.

 

 

Рисунок 9.1– Организация цифрового ствола

 

В скремблере цифровой сигнал складывается по модулю 2 с псевдослучайной последовательностью импульсов ПСП, формируемой в генераторе ПСП. В результате такой логической операции цифровой сигнал приобретает свойства почти случайного и, таким образом, упомянутые выше ситуации исключаются.

Регенератор Р2 устраняет искажения, внесенные элементами радиоствола. В дескремблере ДСК из цифрового сигнала удаляется ПСП. Преобразователь кода ПК2 формирует на своем выходе линейный цифровой сигнал в коде стыка.

 

 

В данном случае передача цифрового сигнала производится по стволу аналоговой РРЛ с ЧМ совместно с групповым сигналом. Структурные схемы устройств совмещения аналогового и цифрового сигналов на передаче и на приеме приведены на рисунках 9.2а и 9.2б.

На передающем конце ЛЦС, пройдя через типовые блоки, поступает на фазовый модулятор ФМД, где модулирует колебания поднесущей частоты генератора ГЕН. На выходе ПК формируется цифровой сигнал в относительном коде. Поэтому на выходе ФМД формируется сигнал ОФМ.

Спектр этого сигнала ограничивается в ПФ с целью уменьшения помех аналоговым сигналам. На вход устройства сложения УСЛ поступают сигналы от оконечного оборудования телефонного ствола ООТФ. Это многоканальный телефонный сигнал и сигналы служебной связи СС.

На приемном конце сигнал с выхода частотного демодулятора ЧД поступает на устройство разделения УР. После фильтрации в полосовом фильтре ПФ цифровой сигнал подается на фазовый демодулятор ФД, на второй вход которого подан сигнал от опорного генератора ГЕН. После прохождения типовых блоков ЛЦС поступает в кабельную соединительную линию.

 

 

Рисунок 9.2 – Организация аналого-цифррового ствола




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 1073; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.