КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Виды дисперсий и правило их сложения
Всякая совокупность, состоящая из значительного числа единиц, может быть расчленена по тому или иному признаку на части, которые называют частными совокупностям или группами. Совокупность, состоящую из нескольких групп, называют общей. Для общей и частной совокупностей могут быть определены средние величины и дисперсии, которые соответственно называются общими и групповыми.
где
х - индивидуальные значения признака; f - число единиц, обладающих данным значением признака;
Общая дисперсия отражает вариацию признака за счет всех условий и причин, действующих в совокупности. Она равна среднему квадрату отклонений отдельных значений признака х от общей средней
Групповая (частная) дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы от средней арифметической этой группы (групповой средней).
Групповая дисперсия отражает вариацию признака только за счет условий и причин, действующих внутри группы. Средняя из групповых (частных) дисперсий - это средняя взвешенная из групповых дисперсий (или остаточная):
Средняя из групповых дисперсий не равна общей дисперсии, т.к. она не учитывает колеблемости признака между группами. Поскольку групповые средние ( Межгрупповая дисперсия характеризует вариацию результативного признака за счет группировочного признака. Она равна среднему квадрату отклонений групповых средних (
Между общей, средней из групповых и межгрупповой дисперсиями существует следующая зависимость:
Достоверность правила сложения дисперсий покажем на примере.
Имеются следующие данные о выполнении норм выработки рабочими участка:
Для расчета средних величин и дисперсий используем способ «моментов»(см. табл.3).
Таблица 3 Расчетная таблица
Тема: ВЫБОРОЧНОЕ НАБЛЮДЕНИЕ
Дата добавления: 2014-01-11; Просмотров: 642; Нарушение авторских прав?; Мы поможем в написании вашей работы! |