Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Динамика машин и механизмов




ЛЕКЦИЯ 4

Экспериментальный метод кинематического исследования.

Метод преобразования координат (Манипуляторы)

При использовании метода преобразования координат задача о положении выходного звена решается путем перехода из системы, в которой это положение известно в систему, в которой его требуется определить. Переход от системы к системе осуществляется перемножением матриц перехода в соответствующей последовательности.

При экспериментальном исследовании кинематики механизмов кинематические характеристики звеньев и точек механизма определяются и регистрируются с помощью чувствительных элементов - датчиков, которые, используя различные физические эффекты, преобразуют кинематические параметры в пропорциональные электрические сигналы. Эти сигналы регистрируются измерительными самопишущими приборами (самописцами, осциллографами и др.). В последнее время для регистрации и обработки экспериментальных данных все более широко используются специальные или универсальные компьютеры.

 

Краткое содержание: Динамика машин и механизмов. Динамические параметры машины и механизма. Задачи динамики. Силы и их классификация. Механические характеристики двигателей и рабочих машин. Силы в КП без учета трения.

Динамика машин и механизмов.

Динамика - раздел механики машин и механизмов, изучающий закономерности движения звеньев механизма под действием приложенных к ним сил. Есть такое определение: "Динамика рассматривает силы в качестве причины движения тел".
В основе динамики лежат три закона, сформулированные Ньютоном, из которых следует:
Из первого закона: Если равнодействующая всех внешних сил, действующих на механическую систему равно нулю, то система находится в состоянии покоя.
Из второго закона: Изменение состояния движения механической системы может быть вызвано либо изменением действующих на нее внешних сил, либо изменением ее массы.

Из этих же законов следует, что динамическими параметрами механической системы являются:

  • инерциальные (массы m и моменты инерции I);
  • силовые (силы Fij и моменты сил Mij);
  • кинематические (линейные a и угловые e ускорения).

Основные задачи динамики машин.

1. Прямая задача динамики – по заданному закону движения входного звена определяют силы, действующие на механизм, в том числе и усилия, возникающие в КП. Эта задача решается в вашем 2 ДЗ «Силовой расчет» с применением кинетостатики (составляют уравнения силового равновесия с учетом сил инерции по принципу Д'Аламбера).

2. Обратная задача динамики - определение закона движения ведущего звена в зависимости от силового воздействия. Эта задача решается в самом объемном листе КП «Динамическое исследование основного механизма».

3. Балансировка и уравновешивание механизмов.

4. Виброзащита и виброизоляция.

Классификация сил, действующих в механизмах.

Силой называется мера механического воздействия одного материального тела на другое, характеризующая величину и направление этого воздействия. Т.е. сила - векторная величина, которая характеризуется величиной и направлением действия.

 

Все силы, действующие в механизмах, условно подразделяются на:

реальные расчетные
На самом деле присутствуют в работе механизма Силы, которые не суще­ствуют в реальности, а только используются в различных расчетах с це­лью их упрощения. Вво­дятся обычно равнодей­ствующей.
Внешние – приложенные к механизму извне, т.е. действующие на исследуемую систему со стороны внешних систем и совершающие работу над системой. Внутренние - дейст­вующие между звень­ями механической сис­темы Работа этих сил не изменяет энергии системы.
1. Движущие силы и моменты, со­вершающие положительную работу. Эти силы и моменты прикладывают к звеньям механизма, которые называют ведущими. 2. Силы и моменты сопротивления, совершающие отрицательную ра­боту - Силы полезного (технологического) сопротивления - возникающие при выполнении механической системой ее основных функций. Эти силы и моменты прикладывают к звеньям механизма, которые называют ведомыми. - Силы и моменты сопротивления среды (газа, жидкости) в которой движутся звенья механизма. Обычно малы по сравнению с другими, поэтому в дальнейшем их не учитываем. 3. Силы тяжести и упругости.. На отдельных участках движения механизма эти силы могут совершать как положительную, так и отрицательную работу, однако за полный кинематический цикл работа этих сил равна нулю, (за исключением тех случаев, когда сила тяжести является силой полезного сопротивления – механизмы подъемников, транспортеров эскалаторов и пр.) Активные силы 1. Силы реакций в КП.   где - номер звена, на которое действует сила (рассматриваемое), - номер звена, со стороны которого рассматривается действие (отсоединенное).   1. Силы инерции - пред­ложены Д’Аламбером для силового расчета под­вижных механиче­ских систем. При добав­лении этих сил к внеш­ним си­лам, действую­щим на систему, уста­навливается квазистати­ческое равно­весие сис­темы и ее можно рассчи­тывать, ис­пользуя урав­нения ста­тики (метод ки­нетоста­тики).     2. Приведенные (обобщенные) силы – силы, совершающие работу по обобщенной координате равную работе соответствующей реальной силы на эквивалентном перемещении точки ее приложения.  
4. Силы трения (диссипативные) - воз­никающие в месте связи в КП и оп­ределяемые условиями физико-ме­ханического взаимодействия между звеньями (работа всегда отрицательна, потери на силы трения уменьшают КПД механизма). Выводятся из класса внутренних сил.
       

 

Наибольшее влияние на закон движения механизма оказывают движущие силы и моменты, а также силы и моменты сопротивления. Их физическая природа, величина и характер действия определяются рабочим процессом машины или прибора, в которых использован рассматриваемый механизм. В большинстве случаев эти силы и моменты не остаются постоянными, а изменяют свою величину при изменении положения звеньев механизма или их скорости. Эти функциональные зависимости, представленные графически, или массивом чисел, или аналитически, носят название механических характеристик и при решении задач считаются известными.

При изображении механических характеристик будем придерживаться следующего правила знаков: силу и момент будем считать положительными, если на рассматриваемом участке пути (линейном или угловом) они производят положительную работу.

Механические характеристики двигателей и рабочих машин

Схема механизма двигателя внутреннего сгорания

Для поршневого двигателя закон изменения движущих сил задается в виде индикаторной диаграммы, показывающей изменение давления рабочей смеси (газа, пара, сжатого воздуха) в течение цикла. Давление задано в зависимости от перемещения поршня, и указывает на перепад давления в рабочей и нерабочей полости цилиндра (Рис.1а). В нерабочей полости давление равно атмосферному. Диаграмма сил (Рис. 1б) отличается от диаграммы давлений (Рис. 1а) аргументом, величиной функции и знаком.

1. Давление задается в зависимости от перемещения поршня, сила строится как функция угла поворота кривошипа. Аргументом является угол поворота кривошипа, который можно считать обобщенной координатой механизма.

2. Величина силы определяется по формуле:

где: - сила, - давление, – диаметр поршня.

3. Знак силы определяется по знаку работы, которую выполняет сила. Работа положительна, если направление силы действующей на поршень совпадает с направлением движения поршня, и отрицательна, если направление силы и перемещение поршня противоположны (Рис.б).

 

Силы в кинематических парах плоских механизмов (без учета трения).

Сила, как векторная величина характеризуется относительно звеньев механизма тремя параметрами: координатами точки приложения, величиной и направлением. Рассмотрим с этих позиций реакции в КП плоских механизмов.

1. Вращательная КП. Во вращательной КП V класса результирующая реакции проходит через центр шарнира. Величина и направление этой реакции не известны, так как они зависят от величины и направлений заданных сил, приложенных к звеньям пары (рис.5а).

2. Поступательная КП. В поступательной КП V класса реакция перпендикулярна к оси движения этой пары, т. о. известно направление, но не известны точка приложения реакции и ее величина (рис.5б).

Вывод: в любой низшей КП плоского механизма могут возникнуть 2 неизвестные.

3. В высшей КП IV класса реакция приложена в точке контакта и направлена по общей нормали проведенной в точке контакта к соприкасающимся профилям звеньев. Т.е. для высшей пары известно направление реакции и точка ее приложения и неизвестна ее величина (рис.5в).

Рис. 5а Рис. 5б Рис. 5в

 

 

 




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 754; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.