Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Функционально-интегрированные биполярно-полевые структуры

Функционально-интегрированная структура, содержащая биполярный р-п-р-транзистор VT1 и полевой транзистор с управляющим р-п переходом VT2, показана на рисунке.

В ней совмещены коллекторная область биполярного р-n-p транзистора с затворной областью и n-канального полевого транзистора, а также базовая область p-n-р-транзистора с истоковой областью полевого транзистора.

Эта структура является основой нового схемотехнического базиса логических элементов, использующего явление инжекции основных носителей заряда и полевой эффект и названного инжекционно-полевой логикой (ИПЛ), выполняет функции инвертора и содержит полевой транзистор в качестве переключательного элемента, а в качестве нагрузочного элемента (генератора тока) — биполярный транзистор. Затвор полевого транзистора служит входом, а сток — выходом инвертора.

Топология элемента допускает в случае необходимости выполнение выходов инвертора в виде нескольких независимых стоковых областей, аналогичных многоколлекторному выходу классической инжекционной логики. С целью получения более высокого быстродействия элементов инжекционно-полевой логики, их строки формируют совмещенными с диодами Шотки:

В основу конструкции элемента ИПЛ с диодами Шотки положена обычная планарно-эпитаксиальная структура со скрытым n+-слоем. Изолирующие области p+-типа в ней соединены металлизацией с n+-областью стока полевого транзистора.

Кроме описанной выше и приведенной на рисунке основной структуры ИПЛ-элемента возможны и другие ее варианты, использующие различные конструкции переключательного и нагрузочного элементов. Общим для всех модификаций будет принцип работы, заключающийся в инжекции неосновных носителей заряда посредством прямосмещенного р-п перехода в истоковую область нормально закрытого полевого транзистора с последующим их коллектированием выпрямляющим переходом затвор — исток полевого транзистора, за счет чего и осуществляется управление проводимостью канала.

На следующем рисунке представлена функционально-интегрированная биполярно-полевая структура, формируемая с применением ионной имплантации.

В ней биполярный р-n-р-транзистор изготавливается по обычной планарно-эпитаксиальной технологии, а для формирования области стока нормально закрытого ПТУП и создания необходимой низкой концентрации примесей в n-- -области канала используются две операции ионного легирования.

Одним из важнейших условий формирования структуры полевого транзистора в ИПЛ-схемах является обеспечение низкой (на уровне 1013...1015 см--3) концентрации примеси в канале. Поэтому вначале имплантацией примеси р-типа в базовую область р-n-р-транзистора за счет перекомпенсации создается участок с пониженной концен­трацией донорной примеси, а затем имплантацией примеси n-типа формируется n -область стока полевого транзистора.

Перспективы развития инжекционно-полевой логики на основе нормально закрытого полевого транзистора оцениваются очень высоко, что объясняется возможностью создания на их основе сверх скоростных, сверхбольших интегральных микросхем и их способностью работать в широком диапазоне температур. Предполагается, что интегральные микросхемы на элементах ИПЛ найдут применение при создании аналоговых устройств (операционных усилителей, аналого-цифровых и цифро-аналоговых преобразователей, усилителей считывания в цифровых устройствах), логических устройств (БИС-часов и микрокалькуляторов, однокристальных ЭВМ), запо­минающих устройств (БИС оперативной памяти, БИС ПЗУ и др.).

Некоторые конструктивно-технологические решения направлены на создание на одном кристалле элементов инжекционно-полевой логики и элементов других схемотехнических базисов:

 

<== предыдущая лекция | следующая лекция ==>
Тема 4: Проектирование п/п биполярно- полевых ИМС | Биполярно-полевые структуры с МДП транзисторами
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 587; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.