КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 10. Числовые ряды и их свойства
Часть 2. Числовые и функциональные ряды Числовой ряд – это сумма бесконечного количества чисел, выбранных по определенному алгоритму. Обычно задают формулу общего члена ряда . Примеры 1. 1+- бесконечно убывающая геометрическая прогрессия со знаменателем . Ее сумма равна , 2. 1+1+1+…..Сумма этого ряда бесконечна.
3. 1-1+1-1… Сумма этого ряда не существует (ни конечная, ни бесконечная).
При изучении рядов возникает основной вопрос: «Сходится ли ряд». Отвечая на этот вопрос для геометрической прогрессии, мы вычисляем последовательно 1+, =1+1+- суммы n членов ряда – частичные суммы ряда . Ряд называется сходящимся, если существует конечный предел последовательности частичных сумм ряда – он называется суммой ряда Рядназывается расходящимся, если предел частичных сумм ряда бесконечен или вообще не существует.
Необходимый признак сходимости ряда. Если ряд сходится, то . Доказательство. . Пусть ряд сходится, тогда . Необходимый признак позволяет отсеивать часть расходящихся рядов.
Достаточный признак расходимости. Если , то ряд расходится. Доказательство (от противного). Пусть ряд сходится. Тогда по необходимому признаку сходимости ряда Противоречие с .
Пример. Ряд расходится, так как Пример Ряд расходится, так как .
Дата добавления: 2014-01-11; Просмотров: 455; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |