Знакопеременный ряд называется знакочередующимся, если знаки членов ряда чередуются, т.е. ряд имеет вид . Предполагаем, что ряд начинается с положительного члена, .
К знакочередующимся рядам можно применить все теоремы, доказанные выше для знакопеременных рядов. Но есть специальный, очень удобный достаточный признак сходимости знакочередующихся рядов – признак Лейбница (он не является необходимым признаком).
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление