Пусть непрерывны в V. Пусть ряд сходится в V, а ряд
.равномерно сходится в V. Тогда ряд можно почленно дифференцировать, причем (= .
Доказательство. Так как ряд сходится равномерно, то его сумма - непрерывная функция (теорема о непрерывности суммы ряда). Ее можно интегрировать, применяя теорему о почленном интегрировании.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление