Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Разложение в ряд Маклорена основных элементарных функций




 

Запишем разложения в ряд Маклорена основных элементарных функций, вычисляя коэффициенты разложения по формуле , где .

 

,

 

(интегрируя предыдущую формулу)

, .

 

Пусть записано разложение функции в степенной ряд. Возникает вопрос, всегда ли это разложение (степенной ряд) сходится именно к этой функции, а не к какой-либо другой.

 

Теорема. Для того чтобы ряд Тейлора сходился к той функции, по которой он построен, необходимо и достаточно, чтобы остаточный член формулы Тейлора стремился к нулю при .

 

Доказательство. Запишем формулу Тейлора, известную из 1 семестра

Необходимость. Обозначим Sn – частичную сумму ряда Тейлора.

.

Если ряд Тейлора сходится к , то . Но по формуле Тейлора . Следовательно, .

Достаточность. Если , то , а - частичная сумма ряда Тейлора. Поэтому ряд Тейлора сходится именно к функции .

 

Теорема. Пусть все производные функции ограничены в совокупности одной константой. Тогда ряд Тейлора сходится к функции .

Доказательство. Оценим остаточный член формулы Тейлора

, так как показательная функция растет медленнее, чем n!. Поэтому (по предыдущей теореме) ряд Тейлора сходится к функции .

В качестве примера применения теоремы рассмотрим разложение в ряд Маклорена функций sin x, cos x. Эти ряды сходятся к функциям, так как их производные ограничены в совокупности единицей на всей оси.

В разложении функции ex на отрезке [a, b] все производные функции ограничены константой eb, поэтому ряд для функции ex сходится к ней на любом конечном отрезке.

Ряды для функций sh x, ch x можно получить линейной комбинацией экспонент, следовательно, ряды для этих функций сходятся к ним на всей оси.

Рассмотрим разложение в ряд функции . Предположим, что ряд сходится к функции . Можно, дифференцируя ряд почленно, установить справедливость соотношения (выведите его в качестве упражнения). Решая это дифференциальное уравнение, получим .

 




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 353; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.