КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Свойства бинарных отношений. 1. Рефлексивность. Отношение R называется рефлексивным, если (х, х)ÎR для любого хÎA
1. Рефлексивность. Отношение R называется рефлексивным, если (х, х)ÎR для любого хÎA. Примеры рефлексивных отношений: отношения "³", "£" на множестве R. 2. Антирефлексивность. Отношение R называется антирефлексивным, если (х, х)ÏR для любого хÎA. Примеры антирефлексивных отношений: отношения "<", ">" на множестве R. Если R – антирефлексивное отношение, то xÏGR(x) и хÏHR(x) для любого хÎA. 3. Симметричность. Отношение R называется симметричным, если для любых x, yÎA из того, что (x, y)ÎR следует (y, x)ÎR и обратно. Примеры симметричных отношений: отношения "=" и "¹". Если отношение R симметрично, то для любого хÎA а) GR(x) = HR(x); б) R = R–1. 4. Антисимметричность. Отношение R называется антисимметричным, если для любых x и y из A из одновременного выполнения условий (x, y)ÎR и (y, x)ÎR следует, что x = y. Пример антисимметричного отношения. Пусть А – множество людей в данной очереди. Отношение R – "не стоять за кем-то в очереди" будет антисимметричным. Пусть х = ВАСЯ, а y = ИВАНОВ. Тот факт, что (x, y)ÎR означает, что "ВАСЯ не стоит в очереди за ИВАНОВЫМ", (y, x)ÎR – "ИВАНОВ не стоит за ВАСЕЙ". Очевидно, что одновременное выполнение обоих включений может быть, только если ВАСЯ и есть ИВАНОВ, т.е. x = y. Отношение "³" также антисимметрично: если x ³ y и y ³ x, то x = y. 5. Асимметричность. Отношение R асимметрично, если R Ç R-1= Æ, т.е. пересечение отношения R с обратным отношением пусто. Эквивалентное определение асимметричности: из двух отношений (x, y) Î R и (y, x)ÎR одно не выполняется. Примеры асимметричных отношений: ">", "<", "быть начальником". Если R – асимметричное отношение, то из xRy следует yx. Для любого отношения R вводятся понятия симметричной части отношения Rs = R ÇR–1 и асимметричной части отношения Ra = R \ Rs. Если отношение R симметрично, то R= Rs, если отношение R асимметрично, то R = Ra. Примеры. Если R – "³", то R–1 – "<", Rs – "=", Ra – ">". 6. Транзитивность. Отношение R транзитивно, если для любых x, y, zÎA из того, что (x, y)ÎR и (y, z)ÎR следует (x, z)ÎR. Свойства транзитивного отношения: а) RoR Í R; б) для любого хÎA из yÎGR(x) следует, что GR(y) Í GR(x). Не транзитивным является отношение "¹". Пусть x = 2, y = 3, z = 2, тогда справедливо x ¹ y и y ¹ z, но x = z, т.е. (x, z)ÏR. Отношение R1 называется транзитивным относительно отношения R2, если: а) из (x, y)Î R1 и (y, x)Î R2 следует, что (x, z)Î R1; б) из (x, y)Î R2 и (y, x)Î R1 следует, что (x, z)Î R1. 7. Негатранзитивность. Отношение R называется негатранзитивным, если`R транзитивно. Примеры. Отношения R1 –">" и R2 –" ¹" негатранзитивны, так как отношения`R1 – "£",`R2 – "=" транзитивны. Возможно одновременное выполнение свойств транзитивности и негатранзитивности. Например, отношение R1 одновременно транзитивно и негатранзитивно, а R2 , как известно, транзитивным не является. 8. Полнота. Отношение R полно, если для любых x, yÎА либо (x, y)ÎR, либо (y, x)ÎR, либо оба отношения выполняются одновременно. Свойства полных отношений: а) GR(x) È HR(x) = А для любого хÎA; б) полное отношение рефлексивно. 9. Слабая полнота. Отношение R называется слабо полным, если для любых х ¹ y из А или (x, y)ÎR, или (y, x)ÎR. Пример слабо полного отношения. Пусть А – множество предприятий, "неблагополучных" в смысле своего бюджета. Отношение R "быть должным" является слабо полным, так как каждое из этих предприятий или кому-либо должно, или ему кто-то должен, но быть должным самому себе нельзя и (x, x)ÏR. 10. Ацикличность. Бинарное отношение R ациклично, если Rn ÇR–1= Æ для любого nÎ N. Иными словами, если из любой конечной цепочки отношений х1Rx2, x2Rx3,..., xn-1Rxn следует, что x1 ¹ хn, то отношение R ациклично.
Дата добавления: 2014-01-11; Просмотров: 1332; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |