Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пересечение поверхности вращения плоскостью

Лекция 10

Форма сечения поверхности вращения плоскостью зависит от угла наклона секущей плоскости к оси вращения поверхности.


Если секущая плоскость:

1) перпендикулярна оси вращения, сечение – окружность;

2) наклонена к оси и пересекает все образующие – эллипс;

3) параллельна одной образующей – парабола;

4) параллельна двум образующим – гипербола;

5) проходит через вершину – две пересекающиеся прямые;

6) касается поверхности – прямая.

Вся совокупность этих линий может быть получена при пересечении конуса плоскостью. Поэтому их называют коническими сечениями, или кониками.

Рис. 6.14


Для построения линии пересечения необходимо найти общие точки поверхности и заданной плоскости. Для определения этих точек необходимо ввести дополнительные секущие плоскости, которые дают наиболее простые линии сечения – окружности или ломаные прямые.

Построение линии сечения начинают с нахождения характерных точек сечения, к которым относятся:

1) высшая и низшая точки;

2) крайняя левая и крайняя правая точки, в которых проекции линии сечения касаются очерковых образующих (точки, лежащие на границе видимости);

3) ближайшая и наиболее удаленная точки сечения.

Пример: Определить линию сечения конуса плоскостью общего положения Q(hÇf). Построить развертку нижней отсеченной поверхности конуса.

Анализ формы линии пересечения

Заданная плоскость пересекает только боковую поверхность конуса, следовательно, линией сечения q является эллипс.

Характерные точки линии пересечения:

1) Высшая и низшая точки сечения (А, В) определяют большую ось эллипса и лежат на линии наибольшего наклона плоскости к плоскости основания конуса. Эти точки определяются с помощью дополнительной плоскости .

О – центр эллипса

2) Малая ось эллипса (С, D) перпендикулярна к линии наибольшего наклона (большой оси), т.е. лежит на горизонтали плоскости .

3) Точки границы видимости (E, F) сечения на лежат в плоскости , делящей конус на видимую и невидимую части по отношению к фронтальной плоскости проекций.

Рис. 6.15

 

Развертка

 

Полная развертка боковой поверхности конуса представляет собой угол кругового сектора. Ее можно построить двумя способами:

 

1. Нахождение угла кругового сектора.


Рис. 6.16

 

где d – диаметр окружности основания конуса,

l – длина образующей.


 

2. Способ малых хорд.

Графическое построение величины осуществляется способом малых хорд, при котором окружность основания конуса делится на 8 или 12 равных частей и полученная длина дуги приравнивается ее хорде.

Разрывать отсеченную боковую поверхность следует по наиболее короткой или длинной образующей, так чтобы развертка представляла собой симметричную фигуру и была единым целым.

Рис. 6.17

<== предыдущая лекция | следующая лекция ==>
Пересечение прямой с поверхностью. Возможны три варианта расположения прямой относительно поверхности | Пересечение многогранников
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 1551; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.