КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Meaning postulates
A fundamental problem for the translator is that the relationships of similarity and difference between concepts (and the words that express them) do not necessary coincide in the languages involved in the translation. It is not difficult to express such relations for a particular language in term of simple set theory and the key notions of inclusion (hyponymy) and exclusion (antonymy) the first focusing on what concepts have in common; the second on what distinguishes them.
A) Hyponymy B) Synonymy C) Antonymy
Total inclusion- Overlap Exclusion (one concept or the meaning of one word is included in other).
Hyponymy presents no problems for the translator (animal includes tiger). Synonymy is particularly problematic, since it involves overlap rather than total inclusion or exclusion and assumes that, in principle, either item may be selected in any context. Antonymy concerns exclusion rather than inclusion and exclusion involves a number of relationships which can be illustrated by considering the following words: true - false; gold - silver - copper; iron - tin; teacher - student, large-small. Some sets consist of items which are in opposition: a) binary, b) multiple, c) hierachical, d) polar, e) relative, f) inverse. Taxonomy: sets of items which display oppositions.
Дата добавления: 2014-01-11; Просмотров: 807; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |