КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Погрешности измерений
Тема 3. Погрешности измерений и средств измерений Отклонение результата измерения от истинного значения измеряемой величины называется погрешностью измерения. Различают абсолютные погрешности измерения, которые выражаются в единицах измеряемой величины, и относительные погрешности измерения, определяемые как отношение абсолютной погрешности измерения к значению измеряемой величины: Δ = х – хи; (3.1) δ = Δ/х, (3.2) где Δ - абсолютная погрешность измерения; х - значение, полученное при измерении; хи - истинное значение измеряемой величины; δ - относительная погрешность измерения. Абсолютная погрешность Δ является результирующей погрешностью, т.е. суммой систематической Δс и случайной Δ0 погрешностей. Систематической погрешностью измерения называется составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины (неисправности измерительной аппаратуры, несовершенство метода измерений, неправильная установка измерительных приборов и т.д.). Случайной погрешностью измерения называется составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины. Часто случайные погрешности возникают из-за одновременного действия многих независимых причин, каждая из которых в отдельности мало влияет на результат измерения. Результат измерения, содержащий грубую погрешность (промах), следует выявить, исключить и не учитывать при дальнейшей статистической обработке. Существуют некоторые общие причины возникновения систематических погрешностей, в соответствии с которыми их подразделяют на методические, инструментальные и субъективные. Методические погрешности происходят от несовершенства метода измерения, использования упрощающих предположений и допущений при выводе применяемых формул, влияния измерительного прибора на объект измерения. Например, измерение температуры с помощью термопары может содержать методическую погрешность, вызванную нарушением температурного режима исследуемого объекта (вследствие внесения термопары). Инструментальные погрешности зависят от погрешностей применяемых средств измерения. Неточность градуировки, конструктивные несовершенства, изменения характеристик прибора в процессе эксплуатации и т.д. являются причинами инструментальных погрешностей. Субъективные погрешности вызываются неправильными отсчетами показаний прибора оператором. Систематические погрешности могут оставаться постоянными либо закономерно изменяться. В последнем случае их подразделяют на прогрессирующие (возрастающие или убывающие), периодические и изменяющиеся по сложному закону. Обнаружение причин и источников систематических погрешностей позволяет принять меры к их устранению или исключению посредством введения поправки. Поправкой называется значение величины, одноименной с измеряемой, которое нужно прибавить к полученному при измерении значению величины с целью исключения систематической погрешности. В некоторых случаях используют поправочный множитель - число, на которое умножают результат измерения для исключения систематической погрешности. Согласно теория вероятностей случайная величина наиболее полно характеризуется своим законом распределения (или плотностью распределения) вероятностей. При измерении чаще всего встречается нормальная и равномерная плотность распределения случайной величины.
Рисунок 3.1 – Нормальный закон распределения погрешностей Нормальный закон распределения вероятностей имеет вид (3.3) где - плотность вероятностей случайной погрешности ; σ -среднее квадратическое значение случайной погрешности. Кривые, соответствующие выражению (3.3) для разных значений σ, приведены на (рис.3.1). Очевидно, что при малых значениях σ получается погрешность измерений меньше, чем при больших. Вероятность того, что погрешность результата измерения находится между заданными предельными значениями и вычисляется по формуле: (3.4) Интеграл в формуле (3.4) вычисляется по таблицам функции Лапласа Ф(z). Распределение погрешностей принимают равномерным, если (3.5) Такой закон распределения характерен, например, для погрешностей отсчета по шкале прибора, погрешностей дискретности в цифровых измерительных приборах, погрешностей квантования в аналого-цифровых преобразователях (АЦП). Поскольку истинное значение измеряемой величины хи неизвестно, непосредственно случайную абсолютную погрешность Δ вычислить нельзя. При практических расчетах приходится вместо хи использовать его оценку. Обычно принимают, что истинное значение равно среднему арифметическому значению ряда измерений: где xi - результаты отдельных измерений; n - число измерений. Введем важные понятия доверительной вероятности и доверительного интервала. Среднее арифметическое значение , полученное в результате некоторого ряда измерений, является оценкой истинного значения хи и, как правило, не совпадает с ним, а отличается на значение погрешности. Пусть Рд есть вероятность того, что отличается от хи не более чем на Δ, т.е. (3.6) Вероятность Рд называется доверительной вероятностью, а интервал значений измеряемой величины от х – Δ до х + Δ - доверительным интервалом. Приведенное выше равенство означает, что с вероятностью Рд доверительный интервал от х - Δ до х + Δ заключает в себе истинное значение хи. Таким образом, чтобы характеризовать случайную погрешность достаточно полно, надо располагать двумя числами - доверительной вероятностью и соответствующим ей доверительным интервалом.
Дата добавления: 2014-01-11; Просмотров: 508; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |