КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Турбулентность и ее основные статистические характеристики Потери напора при турбулентном течении жидкости
Как было указано в п. 6.1, для турбулентного течения характерно перемешивание жидкости, пульсации скоростей и давлений. Если с помощью особо чувствительного прибора-самописца измерять пульсации, например, скорости по времени в фиксированной точке потока, то получим картину, подобную показанной на рис.6.4. Скорость беспорядочно колеблется около некоторого осредненного по времени значения υ оср, которое в данном случае остается постоянным. Характер линий тока в трубе в данный момент времени отличается большим разнообразием (рис.6.5).
Рис. 6.4. Пульсация скорости в турбулентном потоке. Рис. 6.5. Характер линий тока в турбулентном потоке
Турбулентные потоки рассчитывают по некоторым средним по времени расчетным параметрам течения, которые называют осредненными. Пульсационной добавкой скорости называют разность между истинной скоростью v в точке и осредненной скоростью . Для пульсационных добавок скорости имеем . Пульсационные добавки скорости имеют положительные и отрицательные значения и являются функциями времени и координат, причем эти функции являются случайными функциями. В ряде важных практических задач с достаточным приближением можно считать, что они подчиняются нормальному закону Гаусса о распределения вероятности. Величины осредненной пульсационной добавки скорости, давления и напряжения всегда равны нулю. В качестве первой основной характеристики турбулентности, называемой интенсивностью турбулентности, принимают величину . Второй основной характеристикой турбулентности является линейная величина L, определяющая средний размер (в каком-либо направлении) области связанных между собой пульсаций скорости и называемая масштабом турбулентности. В прямоугольной системе координат масштаб L, например, по направлении оси oy выражается так: , где расстояние между точками 1 и 2 по оси оу или параллельной ей оси.
При турбулентном режиме движения жидкости в трубах эпюра распределения скоростей имеет вид, показанный на рис. 6.6. В тонком пристенном слое толщиной δ жидкость течет в ламинарном режиме, а остальные слои текут в турбулентном режиме, и называются турбулентным ядром. Таким образом, строго говоря, турбулентного движения в чистом виде не существует. Оно сопровождается ламинарным движением у стенок, хотя слой δ с ламинарным режимом весьма мал по сравнению с турбулентным ядром. Рис. 6.6. Модель турбулентного режима движения жидкости Основной расчетной формулой для потерь напора при турбулентном течении жидкости в круглых трубах является уже приводившаяся выше формула, называемая формулой Вейсбаха-Дарси. Различие заключается лишь в значениях коэффициента гидравлического трения λ. Этот коэффициент зависит от числа Рейнольдса Re и от безразмерного геометрического фактора - относительной шероховатости Δ/d (или Δ/r0, где r0 - радиус трубы). Впервые наиболее исчерпывающей работы по определению λ были даны И.И. Никурадзе, который на основе опытных данных построил график зависимости lg (1000λ) от lg Re для ряда значений Δ/r 0. Опыты Никурадзе были проведены на трубах с искусственно заданной шероховатостью, полученной путем приклейки песчинок определенного размера на внутренние стенки трубопровода. Результаты этих исследований представлены на рис. 6.7. Прямая I соответствует ламинарному режиму движения жидкости. Далее на графике можно рассматривать три области.
.
. Рис. 6.7. График Никурадзе Во второй области, расположенной между линий II и пунктирной линией справа, коэффициент λ зависит одновременно от двух параметров - числа Re и относительной шероховатости Δ/r0, которую можно заменить на Δэ. Для определения коэффициента λ в этой области может служить универсальная формула А.Д. Альтшуля:
где Δэ - эквивалентная абсолютная шероховатость. Характерные значения Δэ (в мм) для труб из различных материалов приведены ниже: Таблица 6.1 Эквивалентная шероховатость некоторых труб
Третья область - область больших Re и Δ/r0, где коэффициент λ не зависит от числа Re, а определяется лишь относительной шероховатостью (область расположена справа от пунктирной линии). Это область шероховатых труб, в которой все линии с различными шероховатостями параллельны между собой. Эту область называют областью автомодельности или режимом квадратичного сопротивления, т.к. здесь гидравлические потери пропорциональны квадрату скорости. Определение λ для этой области производят по упрощенной формуле Альтшуля:
. Итак, потери напора, определяемые по формуле Вейсбаха-Дарси, можно определить, зная коэффициент гидравлического сопротивления, который определяется в зависимости от числа Рейнольдса и от эквивалентной абсолютной шероховатости Δэ. Для удобства сводные данные по определению λ представлены в таблице 6.2. Пользоваться приведенными в табл. 6.2 формулами для определения коэффициента λ не всегда удобно. Для облегчения расчетов можно воспользоваться номограммой Колбрука-Уайта (рис.6.8), при помощи которой по известным Re и Δэ/ d весьма просто определяется λ. Таблица 6.2 Формулы для определения коэффициента гидравлического трения Рис. 6.8. Номограмма Колбрука-Уайта для определения коэффициента гидравлического трения
Дата добавления: 2014-01-11; Просмотров: 3991; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |