Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Релятивистская концепция механического движения. Представления специальной теории относительности

Механическая форма движения материи. Основы классической механики

Движение - основное свойство материи, включающее в себя любое изменение.

Рассматривают различные формы движения: физические, биологические, социальные и др. Носителями их являются различные материальные образования. Простейшая форма – механическое движение - свойственна любым материальным объектам. Это - изменение положения в пространстве с течением времени.

Изучение механического движения осуществляется на основе двух подходов: кинематического (кинематики), описывающего движение без анализа причин его вызывающих, и динамического (динамики), исследующей причины данного вида движения.

 

М (x,y,z)

 

Основные кинематические характеристики движения некоторой точки: радиус-вектор () – вектор, определяющий положение объекта (материальной точки) в системе координат (рис. 1):

; (1)

перемещение – изменение радиуса-вектора ();

скорость – векторная величина, мера быстроты движения, численно равная производной от радиуса-вектора по времени:

; (2)

ускорение – векторная величина, мера быстроты изменения скорости, в простейшем случае равная отношению изменения скорости ко времени изменения:

; (3)

Фундаментальным свойством движения является его относительность. Она выражается в том, что для его параметры зависят от выбора системы отсчета: связанной с телом отсчета системы координат и выбранного способа измерения времени. Таким образом, положение объекта (координаты), скорость, вид траектории зависят от того, в какой системе отсчета они рассматриваются. Согласно сформулированному Галилеем принципу инерции существуют системы отсчета, в которых тела движутся без ускорения (равномерно и прямолинейно) при отсутствии действия других тел. Такие системы отсчета называются инерциальными. Начало координат этих систем связано с телом, свободным от действия других тел. Инерциальные системы отсчета – идеализация. Если масштаб движения намного меньше размеров Земли, геоцентрическая система может считаться инерциальной. С большим основанием таковой считается гелиоцентрическая система отсчета, еще ближе к инерциальной система, связанная с удаленными звездами. Для инерциальных систем отсчета справедлив принцип относительности Галилея: никакими механическими опытами, производящимися в какой-либо инерциальной системе отсчета, нельзя определить, покоится ли данная система или движется равномерно и прямолинейно. Другими словами, все инерциальные системы отсчета в отношении механических явлений физически равноправны, законы механики в них имеют одинаковую форму (абсолютны).

Относительность скорости обусловливает классический закон сложения скоростей (при переходе из одной системы отсчета в другую): скорость тела в любой системе отсчета определяется векторной суммой скоростей:

; (4)

здесь - скорость тела в одной системе отсчета (покоящейся), - скорость в другой системе (движущейся), - скорость движущейся системы относительно покоящейся.

Динамическое описание выявляет причину изменения механического движения - взаимодействие тел, которое количественно измеряется вектором силы . Подробнее о взаимодействии речь пойдет ниже. Другие важнейшие динамические характеристики, определяющие механическое движение: масса m - скалярная величина, мера инертности тел (инертность – способность препятствовать изменению скорости); импульс – векторная величина, мера механического движения, численно равная произведению массы и скорости:

. (5)

Импульс характеризует состояние механического движения тела в данный момент времени, положение тела в выбранной системе отсчета задается координатами. Эти параметры полностью определяют механическое состояние объекта.

Динамические и кинематические параметры движения связаны между собой. Эта связь представляет собой основные законы движения, сформулированные Ньютоном и составляющие суть классической механики.

I закон Ньютона представляет собой принцип инерции Галилея: если на тело не действует сила, то оно находится в покое или в состоянии прямолинейного равномерного движения.

II закон Ньютона: ускорение тела, приобретаемое при взаимодействии с другими телами, определяется отношением равнодействующей сил к массе.

(6)

(здесь - равнодействующая сил)

III закон Ньтона: два тела действуют друг на друга силами одной природы, равными по величине и противоположными по направлению.

Классическая механика продемонстрировала единство законов движения «земных» и «небесных» объектов, что особенно отчетливо проявляет закон всемирного тяготения, описывающий гравитационное взаимодействие и занимающий одно из важнейших мест в ньютоновской механической картине мира: два точечных объекта притягиваются друг к другу с силой, пропорциональной их массам (m1 и m2) и обратно пропорциональной квадрату расстояния r между ними

 

. (7)

Здесь G - универсальная константа, называемая гравитационной постоянной, G = 6,67·10-11 м3/кг·с2. Всемирное тяготение – основное взаимодействие в масштабах бесконечной Вселенной, управляющее ее движением. Масса тел определяет их способности притягивать и притягиваться. Эта масса называется гравитационной. Численно она равна инертной массе, определяющей ускорение в соответствии со II-ым законом Ньютона (6).

В инерциальных системах отсчета силы и ускорения – абсолютны, а связь их не зависит от выбора системы отсчета, что определяется принципом относительности Галилея.

Следует отметить, что законы Ньютона инвариантны относительно изменения знака времени, т.е. в них физически не отрицается обратный ход времени, не выявляется его необратимость.

Механика Ньютона позволяет однозначно описать механическое состояние системы в любой момент времени по известным начальным параметрам и условиям движения: восстановить прошлое состояние и предсказать будущее. Эта теория – основа детерминизма, предложенного Лапласом (1749 – 1827) в качестве главного принципа устройства мира – принципа, распространяемого на все явления (физические, биологические, социальные, космологические): у любого явления есть причина, которая однозначно определяет следствие, следовательно, в природе нет места случайности.

 

 

Ограниченность классической механики; постулаты специальной (частной) теории относительности Эйнштейна

В конце девятнадцатого столетия классическая физика встретилась с серьезными трудностями. Ньютоновская механика подтверждалась многими экспериментами. Была также экспериментально установлена независимость скорости света в вакууме, регистрируемой наблюдателем (с = 3х108 м/с), от скорости движения наблюдателя т.е. ее абсолютность. Результаты этих экспериментов не укладывались в рамки классического закона сложения скоростей (2.4).

В 1905 г. Альберт Эйнштейн, один из самых выдающихся ученых нашего столетия, реформатор естествознания, разработал новую теорию движения – специальную теорию относительности (релятивистскую механику), которая перебросила мост между механикой и электромагнетизмом и связала воедино обе великие теории классической физики. Эйнштейн отказался от прежней трактовки пространства и времени как совершенно независимых категорий. С его точки зрения пространственные и временная координаты неразрывно связаны друг с другом и равноправны, образуя четырехмерный пространственно-временной континуум.

В основе специальной теории относительности лежат два постулата:

- принцип относительности (Эйнштейна): в одинаковых условиях во всех инерциальных системах отсчета все физические явления протекают одинаково (это положение является обобщением принципа относительности Галилея) т.е. законы физики одинаковы во всех инерциальных системах отсчета;

принцип абсолютности скорости света: скорость света в вакууме одинакова для всех наблюдателей. На основе этих принципов были пересмотрены устоявшиеся представления о характеристиках механического движения.

 

<== предыдущая лекция | следующая лекция ==>
Пространство и время. Лекция 2. Пространство, время, движение | Следствия постулатов специальной теории относительности
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 357; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.