Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 16. Модели данных. Существуют 3 модели данных - реляционная, сетевая и иерархическая; у них разные множества допустимых информационных конструкций




Существуют 3 модели данных - реляционная, сетевая и иерархическая; у них разные множества допустимых информационных конструкций. Вообще можно говорить о наличии самостоятельной модели данных в каждой СУБД. Однако, при создании СУБД происходит модификация модели данных, исходя из удобства программной реализации системы.

Внутреннее описание определяет организацию данных в памяти ЭВМ и организацию доступа к ним. Оно соответствует наиболее детальному представлению о процессах обработки данных в системе.

Реляционная модель данных

Модель данных - указание множества допустимых информационных конструкций, операций над данными и множества ограничений для хранимых значений данных.

Концепция реляционной модели данных была предложена Е.Ф. Коддом в 1970 г. в связи с необходимостью обеспечить независимость представления и описания данных от прикладных программ.

Основа реляционной модели - отношение (relation). Оно удобно представляется двумерной таблицей при соблюдении определенных ограничивающих условий. Таблица понятна, обозрима и привычна для человека (см. рис.15).

Рис.15 Пример таблицы реляционной модели данных

 

Набор отношений (таблиц) может быть использован для хранения данных об объектах реального мира и моделирования связей между ними. Ниже приведенная схема представляет термины реляционной модели.

Схема отношения: СОТРУДНИКИ (Фамилия, Должность, Возраст). Число атрибутов - степень отношения, число кортежей - мощность отношения.

Реляционная база данных - набор взаимосвязанных отношений. Каждое отношение (таблица) представляется в памяти компьютера в виде файла.

Существуют следующие соответствия понятий:

Сущность (класс) Отношение Таблица Файл
Экземпляр (объект) Атрибут Кортеж Атрибут Строка Столбец Запись Поле

 

Оригинальность подхода Кодда состояла в том, что он предложил применять к отношениям стройную систему операций, позволяющих получать (выводить, вычислять подобно арифметическим операциям) одни отношения из других. Это дает возможность делить информацию на хранимую и нехранимую (вычисляемую) части, тем самым экономя память.

Основных операций над отношениями насчитывается 8:

- традиционные операции над множествами (объединение, пересечение, разность (вычитание), декартово произведение, деление);

- специальные реляционные операции: проекция, соединение и выбор (селекция, ограничение).

Языки для выполнения операций над отношениями делят на 2 класса:

1) языки реляционной алгебры, описывающие последовательность действий для получения желаемого результата; это процедурные языки.

2) языки реляционного исчисления, предоставляющие пользователю набор правил для записи “запросов” к базе данных, в которых содержится только информация о желаемом результате. Пример - языки запросов SQL (Structured Query Language).

Реляционная база данных в целом соответствующая 3НФ, обладает рядом свойств, знание которых облегчает и упорядочивает процедуры обработки хранящейся в ней информации. Типичные процедуры, выполняемые с базой данных: выборка, корректировка и арифметические вычисления.

Условия запросов второго типа могут комбинироваться с помощью логических операций И, ИЛИ, НЕ.

Существуют правила реализации запросов к базе данных с помощью операторов реляционной алгебры:

1. В словесной формулировке запроса выделяются имена атрибутов, составляющие оболочку, вход и выход запроса, а такие условия выборки.

2. Зафиксировать множество атрибутов оболочки. Если все необходимые атрибуты находятся в одном отношении, то последующие операции выборки и проекции проводятся только с ним. Если они распределены по нескольким отношениям, то эти отношения необходимо соединить. Каждая пара отношений соединяется по условию равенства атрибутов с совпадающими именами (или определенных на общем домене). После каждого соединения с помощью проекции можно отсечь ненужные для последующих операций атрибуты.

3. Полученное единственное отношение далее обрабатывается операциями выборки и проекции. Выборка по значениям атрибута должна предшествовать проекции, в которой этот атрибут выводится из отношения.

4. Если запрос можно разделить на части (подзапросы), то его реализация также делится на части, где результатом подзапроса является отдельное отношение.

5. Указанная последовательность действий является стандартной, но, возможно, создает промежуточные отношения слишком большого размера. Этот недостаток можно компенсировать, выполняя некоторые выборки и проекции над исходными отношениями (до проведения соединения) и меняя взаимный порядок требуемых соединений.

 

Иерархическая модель данных

Структура данных называется иерархической, если ее схема представлена в виде дерева. Узлами дерева-схемы являются записи, дугами - иерархические связи между записями. Иерархическая связь предполагает, что одной «верхней» записи соответствует несколько реализаций «нижней», т.е. структура использует связи вида «один-ко-многим».

Что представляет собой запись в иерархической структуре? Множество записей, относящихся к заданному узлу схемы, рассматриваемое вне связи с другими узлами, имеет сходство с нормализованным файлом и характеризуется уникальной совокупностью атрибутов.

Совокупность иерархически организованных записей называется иерархической базой данных; отдельный тип записи, соответствующий узлу схемы, называется сегментом.

Если два узла дерева соединены дугой, то узел более высокого уровня называется порождающим, а узел более низкого уровня - порожденным (или подчиненным).

Всякий узел иерархической структуры (кроме корня дерева) имеет один порождающий узел. Ниже (см. рис.16) изображен пример схемы иерархической структуры.

Рис. 16. Пример иерархической модели данных

По заданной иерархической схеме может быть построен файл в первой нормальной форме, иначе, иерархическая база данных может быть преобразована в один или несколько нормализованных файлов. Возможно обратное преобразование: построение иерархической базы данных по одному или совокупности нормализованных файлов.

Для нормализации иерархического файла достаточно каждый узел дерева заменить нормализованным файлом со схемой, представляющей собой объединение атрибутов данного узла с ключами всех узлов, которые мы будем проходить при движении от данного узла по дугам в направлении снизу вверх. Результат операции объединения не изменится, если вместо ключей узлов будем писать дополнения до ключей (ключи только порожденных узлов без ключей порождающих).

 

Сетевая модель данных

Рассмотрим табель учета рабочего времени

Исходный документ не нормализован. В клетках указано количество рабочих часов данного сотрудника в данный день.

Таблица позволяет получать ответы на запросы двух типов:

1. По заданной фамилии сотрудника сообщить его рабочие часы на различные даты.

2. По заданной дате сообщить рабочие часы на эту дату для различных сотрудников.

В нормализованном виде получим таблицу:

ТАБЕЛЬ_1
Дата   Сотрудник   Рабочие
S12   S34   часы
Число День недели ФИО Таб.номер  
Р1 Р2 Р3 Р4 Q5
  Понедельник Вторник Понедельник Вторник Иванов Иванов Петров Петров    

В составе нормализованного файла можно выделить СЕИ, которые располагаются то в ключе, то в результате запроса, и атрибут Q5, всегда относящийся к результату запроса. Запросы такого вида называются инверсными по отношению друг к другу, СЕИ S12 и S34 назовем инверсным условием поиска, атрибут Q5 - информацией связи. Этим запросам можно поставить в соответствие следующие иерархические структуры, изображенные на рис. 17.

 

Рис.17

В обоих случаях информация связи располагается в подчиненном сегменте. Структура, обеспечивающая ответы на запросы обоих типов, имеет вид, представленный на рис.18:

 
 

Рис.18 V-образная сетевая схема

Такая структура называется V-образной сетевой схемой. Она содержит два порождающих сегмента и один подчиненный. Тип связей, соответствующий схеме - “один-ко-многим”.

Подчиненный сегмент Q5 является информацией связи между S12 и S34.

 

Экземпляр рассматриваемой V-образной сетевой схемы называется сетевой БД. Его нормализованное представление - таблица ТАБЕЛЬ_1, а двухвходовое - ТАБЕЛЬ (двухвходовая таблица).


 




Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 424; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.