КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Представление периодических функций времени в частотной области. Ряд ФурьеОписание электромагнитых влияний в частотной и временной областях
В принципе электромагнитные влияния могут рассматриваться как во временной, так и в частотной области. Однако поскольку передаточные свойства путей связи и средств помехоподавления удобнее представлять в частотной области, такое представление чаще всего предпочитают и для помех. Пересчет периодических процессов из временной области в частотную выполняют при помощи ряда Фурье, пересчет однократных импульсных процессов - при помощи интеграла Фурье.
Синусоидальные или косинусоидальные помехи (гармонические процессы) могут быть представлены как во временной, так и в частотной областях непосредственно (рисунок 6.6). В частотной области помеха характеризуется угловой частотой ω и частотой колебаний
Несинусоидальные периодические функции - например, пилообразной или прямоугольной формы импульсы напряжения или тока выпрямителей которые, в некоторых случаях, возможно описать аналитически, - могут быть представлены в частотной области как бесконечная сумма синусоидальных и косинусоидальных колебаний, т. e. рядом Фурье.
Рисунок 6.6 - Представление синусоидальной помехи вовременной и частотной областях
Например, можно представить себе несимметричное напряжение прямоугольной формы возникшим как наложение основного колебания и основной частоты
Частоты высших гармоник являются значениями, кратными этой основной частоте, например .
Рисунок 6.7 - Периодическая несинусоидальная функция
Аналитически ряд Фурье любой функции времени может быть представлен в различных формах:
Нормальная:
Коэффициенты Амплитудно-фазовая: Так как синусоидальные колебания c соответствующим фазовым сдвигом могут быть представлены и как косинусоидальные, например
где
Комплексная. Если дополнять вышеприведенные уравнения мнимой частью и заменить тригонометрические функции по формуле Эйлера
где
Рисунок 6.8 - Амплитудный и фазовый спектры комплексного ряда Фурье
Так как функция
При анализе ЭМС вместо двустороннего математического спектра В заключение на рисунке 6.10. показаны импульсы прямоугольной формы двух периодически изменяющихся напряжений одной и той же основной частоты, однако различной скважности, и относящиеся к ним линейчатые спектры. Из вышесказанного можно установить следующее: наименьшая частота Амплитуды высших гармоник появляются с одинаковым интервалом
Рисунок 6.10 - Линейчатые спектры двух периодических последовательностей прямоугольных импульсов напряжений с личной скважностью (1:2): функция
Ряд Фурье для последовательности прямоугольных импульсов имеет вид:
Коэффициенты (спектральные амплитуды) (без постоянной составляющей) определяются формулой:
Огибающая спектральных амплитуд следует функции
Другие нулевые значения следуют с интервалом Постоянный коэффициент при функции Огибающая амплитуд функции Подобным образом можно рассмотреть и другие формы импульсов с другими огибающими, например, треугольные импульсы, огибающая которых выражается функцией
Дата добавления: 2014-01-13; Просмотров: 1428; Нарушение авторских прав?; Мы поможем в написании вашей работы! |