КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Учет путей передачи и приемников электромагнитных помех
Очень многие задачи электротехники сводятся к изучению результатов воздействия некоторых процессов на устройство той или иной степени сложности. Схемы замещения этих устройств, используемые при анализе электрических процессов, включают схемы замещения как составляющих эти устройства элементов, так и различные паразитные связи (активные, индуктивные и емкостные). Элементы устройств принято подразделять на две основные группы: нелинейные неинерционные и линейные инерционные (или динамические). Принципиально любой элемент электротехнического устройства необходимо рассматривать как нелинейный инерционный. Однако решение задач при столь общих предположениях связано со значительными математическими трудностями. Поэтому указанное выше разделение элементов на линейные и нелинейные (неинерционные) является целесообразным. Погрешность от подобной идеализации может быть оценена в конкретной задаче. Системы, содержащие в своем составе линейные инерционные элементы будут соответственно классифицироваться как линейные инерционные, а системы, содержащие в своем составе нелинейные неинерционные элементы соответственно нелинейными неинерционными. В инерционной системе значения процесса y(t) на ее выходе зависят не только от значения процесса х (t), действующего на входе в тот же момент времени t, но и от его значений в другие моменты времени. Линейная инерционная система характеризуется тем, что величина у (t) получается суперпозицией (сложением) всех значений х(t), каждое из которых умножается на весовой коэффициент h (t, τ), зависящий как от момента приложения τ процесса ко входу, так и от момента наблюдения t процесса на выходе системы. Если в процессе наблюдения параметры системы остаются неизменными, то значение весового коэффициента h (t, τ) зависит только от разности t - τ: h (t, τ)= h (t - τ). В этом случае значение процесса на выходе системы y(t) связано с процессом на входе системы х (t) следующим соотношением: . Функция h (t, τ) получила название импульсной переходной функции. Данная функция является реакцией системы на ее выходе при воздействии на вход единичной импульсной функции δ(t). Вместо импульсной переходной функции в качестве характеристики линейной инерционной системы при анализе в частотной области используют так называемую передаточную функцию представляющую собой преобразование Фурье от h (t, τ): , где . Импульсная переходная функция линейной системы с постоянными параметрами связана с передаточной функцией обратным преобразованиями Фурье:
. Модуль и аргумент передаточной функции называют частотной и фазовой характеристиками линейной системы: .
Шириной полосы пропускания частотной характеристики называют ширину основания прямоугольника, высота которого равна максимальной ординате , а площадь – площади под кривой квадрата частотной характеристики: . Если частотная характеристика имеет резко выраженную область резонанса в окрестности частоты , и если >>, то линейная система с такой характеристикой называется узкополосной. Передаточная функция линейной инерционной системы позволяет достаточно просто определить спектральную плотность процесса на выходе системы при известной спектральной плотности процесса на входе системы:
Поэтому, если перемножить спектральную плотность процесса на выходе источника помехи (и соответственно на входе канала передачи помехи) с передаточной функцией канала передачи помехи , и далее с передаточной функцией приемника, подверженного помехе , то получим спектральную плотность помехи в приемнике :
В логарифмическом масштабе умножение соответствует сложению. Поэтому, если суммировать кривую плотности распределения амплитуд входной помехи с амплитудно-частотной характеристикой тракта передачи, например, с кривой затухания фильтра, то получим график плотности распределения амплитуд помехи после фильтра, а после графического обратного преобразования также ее приблизительный временной ход. Таким образом, с помощью измеренных спектров помех могут быть рассчитаны требуемые помехозащитные фильтры, экраны, испытательные импульсы для моделирования и т.д.
Дата добавления: 2014-01-13; Просмотров: 359; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |