КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Исправление ошибок
15 1 1 1 1 1 1 1 2 0 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 Mod2) Mod2) 1 1 1 1 1 0 1 0 1 0 1 1 0 1 0 H= 1 0 0
В качестве строк матрицы возьмем порядковые двоичные числа номеров строк. Представим кодовую комбинацию V кода Хэмминга в общем виде: V= а1 а2 а3 а4 а5 а6 а7, где аi – двоичные разряды двоичного кода, принимающие значения 0 или 1.
Номера контрольных разрядов выбираются по правилу: если в некоторой строке проверочной матрицы одна единица, то номер этой строки определит номер контрольного разряда в кодовой комбинации. Для данного примера контрольные разряды в кодовой комбинации: а1, а2, а4. В общем случае номера позиций контрольных разрядов можно вычислить из выражения 2i , где i = 0, 1, 2, 3, 4 и т. д. Следовательно, информационные разряды в кодовой комбинации а3, а5, а6, а7. Информационные позиции всегда определены, т.к. они заполняются передаваемой информацией. Контрольные позиции вычисляются по правилам кодирования. Представим кодовую комбинацию V в другом виде: V= x1 x2 a3 x4 a5 a6 a7, где символом x отмечены контрольные позиции, а символом a – информационные. Для нахождения контрольных позиций кода необходимо решить систему уравнений, которая получается после умножения кодовой комбинации V на проверочную матрицу H кода Хэмминга. При умножении применяются специальные правила поразрядного умножения и суммирования по модулю 2:
Правила умножения 1*1=1 1*0=0 0*1=0 0*0=0 Правила суммирования 1+1=0 1+0=1 0+0=0
В качестве результата суммирования берем остаток от деления суммы единиц на модуль 2.
По алгоритму кодирования Хэмминга результат умножения комбинации V на любой столбец матрицы должен быть равен нулю.
Умножим комбинацию V на матрицу H 001 V*H=(x1 x2 a3 x4 a5 a6 a7) * 100 = 0
В результате получим три равенства: x1*0 + x2*0 + a3*0 + x4*1 + a5*1 + a6*1 + a7*1 = 0 x1*0 + x2*1 + a3*1 + x4*0 + a5*0 + a6*1 + a7*1=0 x1*1 + x2*0 + a3*1 + x4*0 + a5*1 + a6*0 + a7*1=0 Учитывая, что умножение на 0 дает нулевой результат, получим три уравнения для вычисления контрольных разрядов кода.
x4=a5 + a6 + a7, x2=a3 + a6 + a7, x1=a3 + a5 + a7. В уравнениях знак минус заменен на плюс, т.к. в операции по модулю 2 вычитание равноценно сложению.
Рассмотрим пример вычисления контрольных разрядов кодовой комбинации. Пусть в комбинации V известны информационные разряды: a3=1, a5=0, a6=1, a7=0
Тогда начальное состояние комбинации: V=x1 x2 1 x4 0 1 0, где разряды x1,x2,x4 - не определены.
Подставим в полученные выше уравнения известные информационные разряды и вычислим контрольные:
X4=0+1+0=1 X2=1+1+0=0 X1=1+0+0=1 В результате процедуры кодирования получим одну комбинацию кода Хэмминга:
V=1 0 1 1 0 1 0 Подобным способом можно получить все 16 комбинаций кода Хэмминга, среди которых есть и нулевая.
…………… ……………. …………….
В каждой комбинации информация занимает 4 разряда. Комбинации используются для передачи информации по каналу связи, в котором возможно искажение кода (ошибки передачи). Из рассмотренного выше правила кодирования следует, что при отсутствии ошибки в коде результат умножения разрешенной кодовой комбинации на проверочную матрицу равен нулю. Искажение кодовой комбинации при передаче ее в канале связи может быть обнаружено путем умножения принятой комбинации на проверочную матрицу. Если результат умножения равен нулю, то это свидетельствует об отсутствии одиночной ошибки в кодовой комбинации. В противном случае в кодовой комбинации при ее передаче возникла ошибка Исправление ошибки будет возможно, если место ошибки однозначно связано с числом, полученным в результате умножения. Это число называется синдромом. Составим таблицу соответствия между ошибками и синдромами.
Можно заметить, что число, которое записано в синдроме, указывает на позицию ошибки в кодовой комбинации.
Пример. 0 1 0 1 0 1 0 Кодовая комбинация 2 +
Дата добавления: 2014-01-13; Просмотров: 383; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |