Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

И неравенства соответствует единственное решение неравенства

И неравенства, и, наоборот, каждому решению уравнения

Соответствует единственное решение уравнения

Теорема. Каждому решению неравенства

.

Доказательство. Пусть – решение неравенства . Тогда

или

Если в уравнение вместо переменных подставить значения =, получится

Таким образом, решение удовлетворяет уравнению

и неравенству . Доказана первая часть теоремы.

Пусть удовлетворяет уравнению и неравенству , т.е. и . Отбрасывая в левой части равенства неотрицательную величину , получим

т.е. удовлетворяет неравенству

что и требовалось доказать.

Если в левую часть неравенств системы ограничений вида , добавить переменную , , то получится система ограничений – уравнений , . В случае, если система неравенств–ограничений имеет вид , , то из левой части неравенств–ограничений нужно вычесть соответствующую неотрицательную дополнительную переменную , .

Полученная таким образом система уравнений–ограничений, вместе с условиями неотрицательности переменных, т.е. , и целевой функцией является канонической формой записи задачи линейного программирования.

Дополнительные переменные вводятся в целевую функцию с нулевыми коэффициентами и поэтому не влияют на ее значения.

В реальных практических задачах дополнительные неизвестные имеют определенный смысл. Например, если левая часть ограничений задачи отражает расход ресурсов на производство продукции в объемах , , а правые части - наличие производственных ресурсов, то числовые значения дополнительных неизвестных , означают объем неиспользованных ресурсов -го вида.

Иногда возникает также необходимость перейти в задаче от нахождения минимума к нахождению максимума или наоборот. Для этого достаточно изменить знаки всех коэффициентов целевой функции на противоположные, а в остальном задачу оставить без изменения. Оптимальные решения полученных таким образом задач на максимум и минимум совпадают, а значения целевых функций при оптимальных решениях отличаются только знаком.

<== предыдущая лекция | следующая лекция ==>
Приведение общей задачи линейного программирования к канонической форме | Множества допустимых решений
Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 396; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.