КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Монотонность функции
Основные понятия Тема 3. Исследование функций Основные понятия, включенные в систему тренинг-тестирования: монотонность функции; экстремум функции; локальный экстремум функции; стационарные точки функции; глобальный экстремум функции; выпуклость функции; точка перегиба функции; интерполяция функции; узлы интерполирования; интерполяционный полином Лагранжа; аппроксимация функций; формула Тейлора; формула Маклорена; эмпирические формулы; невязка. Процесс управления требует от менеджера компактного представления разносторонних знаний из разных областей хозяйственной, управленческой, налоговой, коммерческой и других видов деятельности в виде разнообразных функциональных зависимостей. В процессе такой деятельности перед менеджером возникают задачи тактического и стратегического планирования, оценки возможностей предприятия и конкурентов, оптимального распределения ресурсов, разумного реагирования на налоговую политику, выбора ценовой и инвестиционной политики и др. Важную роль при этом играет исследование функций, используемых при построении математической модели рассматриваемой проблемы. Такое исследование проводится с учетом свойств конкретных функций и позволяет уточнить сформулированную математическую задачу, решая которую (с учетом выбранного метода решения), рассчитывают получить определенный результат, требующий в дальнейшем интерпретации в терминах исследуемой проблемы. Все это связано с выявлением таких свойств функций, используемых в модели, как характер изменения (монотонность), наличие точек с особыми свойствами (стационарные точки, экстремумы), геометрические свойства (выпуклость графика функции) и другие. Настоящий раздел посвящен исследованию функций методами дифференциального исчисления и использованию полученных навыков для решения задач. Функция называется возрастающей на промежутке , если для любых точек и из промежутка , удовлетворяющих неравенству . Функция называется убывающей на , если из условия следует . Теорема. Если функция непрерывна на отрезке , дифференцируема на интервале , то для того, чтобы была возрастающей (убывающей) необходимо и достаточно, чтобы в каждой внутренней точке интервала .
Дифференцируемая функция является возрастающей на промежутке тогда и только тогда, когда . Пример. Найти промежутки возрастания и убывания функции . Вычислим : . Точки делят числовую прямую на три интервала: . Производная положительна на интервалах . Следовательно, функция возрастает на каждом из этих интервалов. На интервале производная неположительна, значит, убывает на этом интервале.
Дата добавления: 2014-01-13; Просмотров: 305; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |