КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция № 16 Кооперативные игры в процессе Р УР
В матричной игре “2х3”. Описание: Предприятие хочет купить три вида оборудования В1,В2 и В3 каждый вид по приемлемой для него цене А1, отличающейся от цены продавца А2, в соответствии со следующей исходной матрицей игры:
Требуется найти такую ценовую стратегию предприятия, которая бы при заключении договора «купли – продажи» доставляла бы ему максимальную сходимость цен по всем трем видам оборудования. При решении этой задачи седловая точка отсутствует, т.к. α ≠ β, но седловая точка присутствует по одному виду оборудования (В2=0,6). В этом случае задача может быть сведена к матричной игре «2х2». В противном случае решение игры следует искать в смешанных стратегиях для всех трёх видов продукции.
Кооперативные игры получаются в тех случаях, когда, в игре n игроков разрешается образовывать определённые коалиции. Обозначим через N множество всех игроков, N ={1, 2,..., n }, а через K – любое его подмножество. Пусть игроки из K договариваются между собой о совместных действиях и, таким образом, образуют одну коалицию. Очевидно, что число таких коалиций, состоящих из r игроков, равно числу сочетаний из n по r, то есть , а число всевозможных коалиций равно = 2 n – 1. Из этой формулы видно, что число всевозможных коалиций значительно растёт в зависимости от общего количества игроков в данной игре. Для исследования этих игр необходимо учитывать все возможные коалиции, и поэтому трудности исследований возрастают с ростом n. Образовав коалицию, множество игроков K действует как один игрок против остальных игроков, и выигрыш этой коалиции зависит от применяемых стратегий каждым из n игроков. Функция u, ставящая в соответствие каждой коалиции K наибольший, уверенно получаемый его выигрыш u(K), называется характеристической функцией игры. Так, например, для бескоалиционной игры n игроков u(K) может получиться, когда игроки из множества K оптимально действуют как один игрок против остальных NK игроков, образующих другую коалицию (второй игрок).
Характеристическая функция u называется простой, если она принимает только два значения: 0 и 1. Если характеристическая функция u простая, то коалиции K, для которых u(K)=1, называются выигрывающими, а коалиции K, для которых u(K) = 0, – проигрывающими. Если в простой характеристической функции u выигрывающими являются те и только те коалиции, которые содержат фиксированную непустую коалицию R, то характеристическая функция u, обозначаемая в этом случае через u R, называется - простейшей. Содержательно простые характеристические функции возникают, например, в условиях голосования, когда коалиция является выигрывающей, если она собирает более половины голосов (простое большинство) или не менее двух третей голосов (квалифицированное большинство). Более сложным является пример оценки результатов голосования в Совете безопасности ООН, где выигрывающими коалициями являются все коалиции, состоящие из всех пяти постоянных членов Совета плюс ещё хотя бы один непостоянный член, и только они. Простейшая характеристическая функция появляется, когда в голосующем коллективе имеется некоторое “ядро”, голосующее с соблюдением правила “вето”, а голоса остальных участников оказываются несущественными. Обозначим через u G характеристическую функцию бескоалиционной игры. Эта функция обладает следующими свойствами: 1) персональность u G (Æ) = 0, т.е. коалиция, не содержащая ни одного игрока, ничего не выигрывает; 2) супераддитивность u G (K È L) ³ u G (K) + u G (L), если K, L Ì N, K Ç L ¹ Æ, т.е. общий выигрыш коалиции не меньше суммарного выигрыша всех участников коалиции; 3) дополнительность u G (K) + u(NK) = u(N) (16.1) т.е. для бескоалиционной игры с постоянной суммой сумма выигрышей коалиции и остальных игроков должна равняться общей сумме выигрышей всех игроков.
Распределение выигрышей (делёж) игроков должно удовлетворять следующим естественным условиям: если обозначить через xi выигрыш i- го игрока, то, во-первых, должно удовлетворяться условие индивидуальной рациональности xi ³ u(i), для i ÎN (16.2) т.е. любой игрок должен получить выигрыш в коалиции не меньше, чем он получил бы, не участвуя в ней (в противном случае он не будет участвовать в коалиции); во-вторых, должно удовлетворяться условие коллективной рациональности = u(N) (16.3) т.е. сумма выигрышей игроков должна соответствовать возможностям (если сумма выигрышей всех игроков меньше, чем u(N), то игрокам незачем вступать в коалицию; если же потребовать, чтобы сумма выигрышей была больше, чем u(N), то это значит, что игроки должны делить между собой сумму большую, чем у них есть). Таким образом, вектор x = (x1,..., xn), удовлетворяющий условиям индивидуальной и коллективной рациональности, называется дележём в условиях характеристической функции u. Система { N, u}, состоящая из множества игроков, характеристической функции над этим множеством и множеством дележей, удовлетворяющих соотношениям (16.2) и 16.(3) в условиях характеристической функции, называется классической кооперативной игрой. Очевидно, в решение кооперативной игры должны входить дележи, лучшие с определён- ной точки зрения. Однако, найти делёж, который не только не доминировался бы какими-либо другими дележами, но сам доминировал бы любой другой делёж, не удаётся. Поэтому
решение отыскивают на пути расширения класса дележей. И это расширение состоит в том, что решением игры должен быть не один делёж, а некоторое их множество. Дж. фон Нейман и О. Моргенштерн предложили потребовать от множества дележей, которое принимается в качестве решения кооперативной игры следующие два свойства: - внутреннюю устойчивость, состоящую в том, чтобы дележи из решений нельзя было противопоставить друг другу; - внешнюю устойчивость, состоящую в возможности каждому отклонению от решения противопоставлять некоторый делёж, принадлежащий решению. В результате мы приходим к следующему определению. Определение. Решением по Нейману-Моргенштерну (Н-М-решением) кооперативной игры называется множество R дележей в нём, обладающее следующими свойствами: 1) внутренняя устойчивость: никакие два дележа из R не доминируют друг друга; 2) внешняя устойчивость: каков бы ни был делёж S не принадлежащий R, найдётся делёж r, принадлежащий R, который доминировал бы S. Содержательная интерпретация Н-М-решения состоит в том, что любые две нормы поведения, соответствующие Н-М-решению, не могут быть противопоставлены друг другу; каково бы ни было отклонение от допустимых поведений, найдётся такая коалиция, которая будет стремиться к восстановлению нормы. Свойство Н-М-решений. Н-М-решение кооперативной игры не может состоять только из одного дележа, т.к. в этом случае характеристическая функция игры несуществует.
Дата добавления: 2014-01-13; Просмотров: 394; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |