Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Технология Gigabit Ethernet

Как и в стандарте Fast Ethernet, в Gigabit Ethernet не существует универсальной схемы кодирования сигнала, которая была бы идеальной для всех физических интерфейсов - так, с одной стороны, для стандартов 1000Base-LX/SX/CX используется кодирование 8B/10B, а с другой стороны, для стандарта 1000Base-T используется специальный расширенный линейный код TX/T2. Функцию кодирования выполняет подуровень кодирования PCS, размещенный ниже среданезависимого интерфейса GMII.

Рис. 10. Структура уровней стандарта Gigabit Ethernet, GII интерфейс и трансивер Gigabit Ethernet

GMII интерфейс. Среданезависимый интерфейс GMII (gigabit media independent interface) обеспечивает взаимодействие между уровнем MAC и физическим уровнем. GMII интерфейс является расширением интерфейса MII и может поддерживать скорости 10, 100 и 1000 Мбит/с. Он имеет отдельные 8 битные приемник и передатчик, и может поддерживать как полудуплексный, так и дуплексный режимы. Кроме этого, GMII интерфейс несет один сигнал, обеспечивающий синхронизацию (clock signal), и два сигнала состояния линии - первый (в состоянии ON) указывает наличие несущей, а второй (в состоянии ON) говорит об отсутствии коллизий - и еще несколько других сигнальных каналов и питание. Трансиверный модуль, охватывающий физический уровень и обеспечивающий один из физических средазависимых интерфейсов, может подключать например к коммутатору Gigabit Ethernet посредством GMII интерфейса.

Подуровень физического кодирования PCS. При подключении интерфейсов группы 1000Base-X, подуровень PCS использует блочное избыточное кодирование 8B10B, заимствованное из стандарта ANSI X3T11 Fibre Channel. Аналогичного рассмотренному стандарту FDDI, только на основе более сложной кодовой таблицы каждые 8 входных битов, предназначенных для передачи на удаленный узел, преобразовываются в 10 битные символы (code groups). Кроме этого в выходном последовательном потоке присутствуют специальные контрольные 10 битные символы. Примером контрольных символов могут служить символы, используемые для расширения носителя (дополняют кадр Gigabit Ethernet до его минимально размера 512 байт). При подключении интерфейса 1000Base-T, подуровень PCS осуществляет специальное помехоустойчивое кодирование, для обеспечения передачи по витой паре UTP Cat.5 на расстояние до 100 метров -линейный код TX/T2, разработанный компанией Level One Communications.

Два сигнала состояния линии - сигнал наличие несущей и сигнал отсутствие коллизий - генерируются этим подуровнем.

Подуровни PMA и PMD. Физический уровень Gigabit Ethernet использует несколько интерфейсов, включая традиционную витую пару категории 5, а также многомодовое и одномодовое волокно. Подуровень PMA преобразует параллельный поток символов от PCS в последовательный поток, а также выполняет обратное преобразование (распараллеливание) входящего последовательного потока от PMD. Подуровень PMD определяет оптические/электрические характеристики физических сигналов для разных сред. Всего определяются 4 различный типа физических интерфейса среды, которые отражены в спецификация стандарта 802.3z (1000Base-X) и 802.3ab (1000Base-T), (рис.11).

Рис. 11. Физические интерфейсы стандарта Gigabit Ethernet

Интерфейс 1000Base-X

Интерфейс 1000Base-X основывается на стандарте физического уровня Fibre Channel. Fibre Channel - это технология взаимодействия рабочих станций, суперкомпьютеров, устройств хранения и периферийных узлов. Fibre Channel имеет 4-х уровневую архитектуру. Два нижних уровня FC-0 (интерфейсы и среда) и FC-1 (кодирование/декодирование) перенесены в Gigabit Ethernet. Поскольку Fibre Channel является одобренной технологией, то такое перенесение сильно сократило время на разработку оригинального стандарта Gigabit Ethernet.

Блочный код 8B/10B аналогичен коду 4B/5B, принятому в стандарте FDDI. Однако код 4B/5B был отвергнут в Fibre Channel, потому что этот код не обеспечивает баланса по постоянному току. Отсутствие баланса потенциально может привести к зависящему от передаваемых данных нагреванию лазерных диодов, поскольку передатчик может передавать больше битов "1" (излучение есть), чем "0" (излучения нет), что может быть причиной дополнительных ошибок при высоких скоростях передачи.

1000Base-X подразделяется на три физических интерфейса, основные характеристики которых приведены ниже:

· Интерфейс 1000Base-SX определяет лазеры с допустимой длиной излучения в пределах диапазона 770-860 нм, мощность излучения передатчика в пределах от -10 до 0 дБм, при отношении ON/OFF (сигнал / нет сигнала) не меньше 9 дБ. Чувствительность приемника -17 дБм, насыщение приемника 0 дБм;

· Интерфейс 1000Base-LX определяет лазеры с допустимой длиной излучения в пределах диапазона 1270-1355 нм, мощность излучения передатчика в пределах от -13,5 до -3 дБм, при отношении ON/OFF (есть сигнал / нет сигнала) не меньше 9 дБ. Чувствительность приемника -19 дБм, насыщение приемника -3 дБм;

· 1000Base-CX экранированная витая пара (STP "twinax") на короткие расстояния.

 

Технические характеристики оптических приемо-передатчиков Gigabit Ethernet

Стандарт Тип волокна/ медного кабеля Полоса пропускания (не хуже), МГц*км Максимальное расстояние*, м
1000Base-LX (лазерный диод 1300 нм) Одномодовое волокно (9 мкм) - 5000**
Многомодовое волокно (50 мкм)***    
Многомодовое волокно (62,5 мкм)***    
1000Base-SX (лазерный диод 850 нм) Многомодовое волокно (50 мкм)    
Многомодовое волокно (62,5 мкм)    
Многомодовое волокно (62,5 мкм)    
1000Base-CX Экранированная витая пара: STP 150 Ом -  
* - Все расстояния за исключением последнего (25 м) предполагают использование дуплексного режима. ** - Большее расстояние может обеспечивать оборудование некоторых производителей, оптические сегменты без промежуточных ретрансляторов/усилителей могут достигать 100 км. *** - Может требоваться специальный переходной шнур (см. Особенности использования многомодовых ВОК).

Интерфейс 1000Base-T

1000Base-T - это стандартный интерфейс Gigabit Ethernet передачи по неэкранированной витой паре категории 5 и выше на расстояния до 100 метров. Для передачи используются все четыре пары медного кабеля, скорость передачи по одной паре 250 Мбит/c. Предполагается, что стандарт будет обеспечивать дуплексную передачу, причем данные по каждой паре будут передаваться одновременно сразу в двух направлениях - двойной дуплекс (dual duplex). 1000Base-T. Технически реализовать дуплексную передачу 1 Гбит/с по витой паре UTP cat.5 оказалось довольно сложно, значительно сложней чем в стандарте 100Base-TX. Влияние ближних и дальних переходных помех от трех соседних витых пар на данную пару в четырехпарном кабеле требует разработки специальной скремблированной помехоустойчивой передачи, и интеллектуального узла распознавания и восстановления сигнала на приеме. Несколько методов кодирования первоначально рассматривались в качестве кандидатов на утверждение в стандарте 1000Base-T, среди которых: 5-уровневое импульсно-амплитудное кодирование PAM-5; квадратурная амплитудная модуляция QAM-25, и др. Ниже приведены кратко идеи PAM-5, окончально утвержденного в качестве стандарта.

Почему 5-уровневое кодирование. Распространенное четырехуровневое кодирование обрабатывает входящие биты парами. Всего существует 4 различных комбинации - 00, 01, 10, 11. Передатчик может каждой паре бит установить свой уровень напряжения передаваемого сигнал, что уменьшает в 2 раза частоту модуляции четырехуровневого сигнала, 125 МГц вместо 250 МГц, (рис.4), и следовательно частоту излучения. Пятый уровень добавлен для создания избыточности кода. В результате чего становится возможной коррекция ошибок на приеме. Это дает дополнительный резерв 6 дБ в соотношении сигнал/шум.

Рис. 12. Схема 4-х уровневого кодирования PAM-4

Уровень MAC

Уровень MAC стандарта Gigabit Ethernet использует тот же самый протокол передачи CSMA/CD что и его предки Ethernet и Fast Ethernet. Основные ограничения на максимальную длину сегмента (или коллизионного домена) определяются этим протоколом.

В стандарте Ethernet IEEE 802.3 принят минимальный размер кадра 64 байта. Именно значение минимального размера кадра определяет максимальное допустимое расстояние между станциями (диаметр коллизионного домена). Время, которого станция передает такой кадр - время канала - равно 512 BT или 51,2 мкс. Максимальная длина сети Ethernet определяется из условия разрешения коллизий, а именно время, за которое сигнал доходит до удаленного узла и возвращается обратно RDT не должно превышать 512 BT (без учета преамбулы).

При переходе от Ethernet к Fast Ethernet скорость передачи возрастает, а время трансляции кадра длины 64 байта соответственно сокращается - оно равно 512 BT или 5,12 мкс (в Fast Ethernet 1 BT = 0,01 мкс). Для того, чтобы можно было обнаруживать все коллизии до конца передачи кадра, как и раньше необходимо удовлетворить одному из условий:

1. сохранить прежнюю максимальную длину сегмента, но увеличить время канала (и следовательно увеличить минимальную длину кадра), или

2. сохранить время канала, (сохранить прежний размер кадра), но уменьшить максимальную длину сегмента.

В Fast Ethernet был оставлен такой же минимальный размер кадра, как в Ethernet. Это сохранило совместимость, но привело к значительному уменьшению диаметра коллизионного домена.

Опять же в силу преемственности стандарт Gigabit Ethernet должен поддерживать те же минимальный и максимальный размеры кадра, которые приняты в Ethernet и Fast Ethernet. Но поскольку скорость передачи возрастает, то соответственно уменьшается и время передачи пакета аналогичной длины. При сохранении прежней минимальной длины кадра это привело бы к уменьшению диаметра сети, который не превышал бы 20 метров, что могло быть мало полезным. Поэтому, при разработке стандарта Gigabit Ethernet было принято решение увеличить время канала. В Gigabit Ethernet оно составляет 4096 BT и в 8 раз превосходит время канала Ethernet и Fast Ethernet. Но, чтобы поддержать совместимость со стандартами Ethernet и Fast Ethernet, минимальный размер кадра не был увеличен, а было добавлено к кадру дополнительное поле, получившее название "расширение носителя".

Расширение носителя (carrier extension)

Символы в дополнительном поле обычно не несут служебной информации, но они заполняют канал и увеличивают "коллизионное окно". В результате, коллизия будет регистрироваться всеми станциями при большем диаметре коллизионного домена.

Если станция желает передать короткий (меньше 512 байт) кадр, до при передаче добавляется это поле - расширение носителя, дополняющее кадр до 512 байт. Поле контрольной суммы вычисляется только для оригинального кадра и не распространяется на поле расширения. При приеме кадра поле расширения отбрасывается. Поэтому уровень LLC даже и не знает о наличии поля расширения. Если размер кадра равен или превосходит 512 байт, то поле расширения носителя отсутствует.


Рис. 13. Кадр Gigabit Ethernet

<== предыдущая лекция | следующая лекция ==>
Общая характеристика технологии 100VG-AnyLAN | 
Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 1540; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.119 сек.