![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Тело кватернионов
Первой системой на пути обобщения комплексных чисел явились кватернионы, т. е. выражения вида На множестве кватернионов определяют два внутренних закона. Аддитивный закон задается подобно сложению комплексных чисел, т.е. сумма кватернионов
Очевидно, этот закон ассоциативный и коммутативный. Нейтральным элементом относительно сложения служит Чтобы множество кватернионов было телом, мультипликативный закон (умножение кватернионов) должен быть ассоциативным и дистрибутивным относительно сложения. Это достигается, с одной стороны, определением мультипликативного закона подобно умножению многочленных алгебраических выражений и, с другой стороны, заданием правила умножения кватернионов, которое в наиболее лаконичной записи имеет вид:
где порядок сомножителей в произведении ijk строго фиксирован. Отсюда также следует
Действительно, умножая справа на k обе части равенства ijk = -1, имеем ijk2 = - k или ij = k. Умножая полученное уравнение на j справа или на i слева, получаем соответственно - i = kj или - j = ik и т. д.
Нетрудно проверить, что мультипликативный закон (умножение кватернионов) не коммутативный (проверяется непосредственным умножением с учетом изложенных выше правил). Нейтральным элементом относительно умножения служит единица, рассматриваемая как кватернион, у которого а = 1 и b = с = d = 0. Можно также показать, что относительно умножения каждый кватернион
где число В механике кватернионы применяются при решении задач, связанных с вращениями твердого тела в пространстве.
Дата добавления: 2014-01-13; Просмотров: 744; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |