Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пример 11. Определим медиану заработной платы рабочих

Пример 10.

Определим медиану заработной платы рабочих.

 

Таблица 5.7.

Месячная з/п, руб. Число рабочих Сумма накопительных частот
     
    8 (2+6)
    24 (8+16)
   
   
     

 

Для определения медианы надо подсчитать сумму накопленных частот ряда. Наращивание итога продолжается до получения накопленной суммы частот, превышающей половину. В нашем примере сумма частот составила ее половина - 20.

Накопленная сумма частот ряда получилась равной Варианта, соответствующая этой сумме, т.е. 160 руб., и есть медиана ряда.

Если же сумма накопленных частот против одной из вариант равна точно половине сумме частот, то медиана определяется как средняя арифметическая этой варианты и последующей.

 

Таблица 5.8.

Месячная з/п, руб. Число рабочих Сумма накопительных частот
     
    8 (2+6)
    20 (8+12)
   
   
     

 

Медиана будет равна:

 

Ме = (150 + 170) / 2 = 160 руб.

 

Рассмотрим расчет медианы в интервальном вариационном ряду.

Медиана интервального вариационного ряда распределения определяется по формуле

где — начальное значение интервала, содержащего медиану;

— величина медианного интервала;

— сумма частот ряда;

— сумма накопленных частот, предшествующих медианному интервалу;

— частота медианного интервала.

 

Пример 12.

Таблица 5.9.

Группы предприятий по числу рабочих Число предприятий Сумма накопительных частот
100 — 200    
200 — 300   4 (1+3)
300 — 400   11 (4+7)
400 — 500   41 (11+30)
500 — 600  
600 — 700  
700 — 800  
ИТОГО    

 

Определим прежде всего медианный интервал. В данной задаче сумма накопленных частот, превышающая половину всех значений (41), соответствует интервалу 400 - 500. Это и есть медианный интервал, в котором находится медиана. Определим ее значение по приведенной выше формуле.

Известно, что:

 

Следовательно,

.

1. Мода (Mo) – величина признака, наиболее часто встречающаяся в совокупности, т.е. имеющая наибольшую численность в ряду распределения.

а) В дискретном ряду распределения мода определяется визуально.

б) В интервальном ряду распределения визуально можно определить только интервал, в котором заключена мода, который называется модальным интервалом. Мода будет равна:

где хМо – нижняя граница модального интервала;

iМо величина модального интервала;

fМо частота модального интервала;

fМо-1 – частота, предшествующая модальному интервалу;

fМо+1 – частота интервала, следующего за модальным.

2. Медиана (Me) – значение признака, приходящееся на середину ранжированного ряда, т.е. делящее ряд распределения на две равные части.

а) В дискретном ряду распределения определяется номер медианы по формуле:

Номер медианы показывает то значение показателя, которое и является медианой.

б) В интервальном ряду распределения медиана рассчитывается по следующей формуле:

где хМе – нижняя граница медианного интервала;

iМе величина медианного интервала;

fМе частота медианного интервала;

S Ме-1 – сумма накопленных частот, предшествующих медианному интервалу;

åfi/2 – полусумма частот ряда.

 

Мода и медиана могут быть определены графически.

 

 

<== предыдущая лекция | следующая лекция ==>
Пример 9. Распределение предприятий по численности промышленно - производственного персонала характеризуется следующими данными: | Тема 1. Сущность и природа социально-экономической безопасности
Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 3327; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.