КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример 11. Определим медиану заработной платы рабочих
Пример 10. Определим медиану заработной платы рабочих.
Таблица 5.7.
Для определения медианы надо подсчитать сумму накопленных частот ряда. Наращивание итога продолжается до получения накопленной суммы частот, превышающей половину. В нашем примере сумма частот составила ее половина - 20. Накопленная сумма частот ряда получилась равной Варианта, соответствующая этой сумме, т.е. 160 руб., и есть медиана ряда. Если же сумма накопленных частот против одной из вариант равна точно половине сумме частот, то медиана определяется как средняя арифметическая этой варианты и последующей.
Таблица 5.8.
Медиана будет равна:
Ме = (150 + 170) / 2 = 160 руб.
Рассмотрим расчет медианы в интервальном вариационном ряду. Медиана интервального вариационного ряда распределения определяется по формуле где — начальное значение интервала, содержащего медиану; — величина медианного интервала; — сумма частот ряда; — сумма накопленных частот, предшествующих медианному интервалу; — частота медианного интервала.
Пример 12. Таблица 5.9.
Определим прежде всего медианный интервал. В данной задаче сумма накопленных частот, превышающая половину всех значений (41), соответствует интервалу 400 - 500. Это и есть медианный интервал, в котором находится медиана. Определим ее значение по приведенной выше формуле. Известно, что:
Следовательно, . 1. Мода (Mo) – величина признака, наиболее часто встречающаяся в совокупности, т.е. имеющая наибольшую численность в ряду распределения. а) В дискретном ряду распределения мода определяется визуально. б) В интервальном ряду распределения визуально можно определить только интервал, в котором заключена мода, который называется модальным интервалом. Мода будет равна: где хМо – нижняя граница модального интервала; iМо – величина модального интервала; fМо – частота модального интервала; fМо-1 – частота, предшествующая модальному интервалу; fМо+1 – частота интервала, следующего за модальным. 2. Медиана (Me) – значение признака, приходящееся на середину ранжированного ряда, т.е. делящее ряд распределения на две равные части. а) В дискретном ряду распределения определяется номер медианы по формуле: Номер медианы показывает то значение показателя, которое и является медианой. б) В интервальном ряду распределения медиана рассчитывается по следующей формуле: где хМе – нижняя граница медианного интервала; iМе – величина медианного интервала; fМе – частота медианного интервала; S Ме-1 – сумма накопленных частот, предшествующих медианному интервалу; åfi/2 – полусумма частот ряда.
Мода и медиана могут быть определены графически.
Дата добавления: 2014-01-13; Просмотров: 3327; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |