КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Локальная фаза уравнений
Уравнения массо-, тепло- и импульсопередачи. Рассмотрим перенос субстанции из фазы 1 через межфазную поверхность в фазу 2 за счет молекулярного и турбулентного механизмов. Примем, что сопротивлением переносу субстанции со стороны межфазной поверхности можно пренебречь. Это равносильно предположению об установлении равновесия на границе раздела фаз, т.е.:
mгi1 = mгi2, Тг1 = Тг2, Wг1 = Wг2 (2.77) Предположим mi1 >mi2, тогда: Y
2 фаза межфазная поверхность 1 фаза X Рис 2.7 jdгiy = bi1(mяi1 - mгi1) (2.78) jdгiy = bi2(mгi2 - mяi2)
Разделим уравнения на bi1 и bi2 соответственно и их сложим:
jdгiy (1/bi1 + 1/bi2) = mяi1 - mяi2
jdгiy = (1/bi1 + 1/bi2)-1 *(mяi1 - mяi2) = Кid * (mяi1 - mяi2) (2.79)
Здесь Кid – коэффициент массопередачи, (mяi1 - mяi2) – движущая сила массопередачи. Уравнение (2.79) носит название уравнения массопередачи.
Химические потенциалы неидеальных (реальных) систем достаточно сложно, поэтому при анализе и расчёте процессов массопереноса обычно рассматривают изменение не химических потенциалов, а концентраций компонентов, определение которых значительно проще. Разностью между рабочими и равновесными концентрациями в одной из фаз является движущей силой массообменного процесса.
Аналогичным образом могут быть получены уравнения тепло- и импульсопередачи: , , (2.80) если . , , (2.81) если . Здесь и – коэффициенты тепло- и импульсопередачи. Соотношения (2.79) – (2.81) могут быть представлены иначе: (2.82) Здесь , и – сопротивления массо-, тепло-, импульсопередачи (межфазные сопротивления), а , и – сопротивления массо-, тепло- и импульсоотдачи (фазовые сопротивления). Соотношения (2.82) выражают аддитивность фазовых сопротивлений. Например, если процесс теплопередачи идёт через стенку: , (2.83) где – термическое сопротивление стенки. Профили , , в процессах переноса субстанций через границу раздела фаз, не обладающих сопротивлением, приведены на рис.2.8. Если сопротивление одной из фаз, например первой, гораздо больше второй, то последним можно пренебречь: , , (2.84)
Дата добавления: 2014-01-13; Просмотров: 303; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |