Определение 1. Функция непрерывна в точке , если предел этой функции при равен значению функции в предельной точке, то есть .
Применяя второе определение предела функции в точке, получим
Определение 2. Функция непрерывна в точке , если .
Определение 3. Функция непрерывна в точке , если , где приращение аргумента функции (), а – приращение функции, соответствующее приращению ее аргумента .
Доказательство следует из первого определения непрерывной функции
Здесь первый из пределов вычисляется с помощью определения 1, второй – как предел постоянной, поскольку не зависит от .
Определение 4. Функция непрерывна в точке , если
.
Определение 5. Функция непрерывна в некоторой области, если она непрерывна во всех точках этой области.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление