Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Последовательное распространение вероятностей

Распространение вероятностей в ЭС

Вероятности событий распространяются по БЗ экспертной системы на основе правила Байеса для вычисления всех апостериорных вероятностей гипотез при условии наблюдаемых свидетельств. Эти апостериорные вероятности дают ранжированную информацию о потенциально истинной гипотезе. Рассмотрим пример, иллюстрирующий этот процесс.

Пример. Предположим, что в некоторой БЗ имеется всего три взаимно независимых гипотезы: H1, H2, H3, которые имеют априорные вероятности: p(H1), p(H2), p(H3), соответственно. Правила БЗ содержат два условно независимых свидетельства, которые поддерживают исходные гипотезы в различной степени. Априорные и условные вероятности всех гипотез и свидетельств этого примера имеют следующие значения:

p(i)      
p(Hi) 0,5 0,3 0,2
p(E1|Hi) 0,4 0,8 0,3
p(E2|Hi) 0,7 0,9 0,0

При этом исходные гипотезы характеризуют событие, связанное с определением надежности некоторой фирмы:

 

 

H1 - “средняя надежность фирмы”,

H2 - “высокая надежность фирмы”,

H3 - “низкая надежность фирмы”.

Событиями, являющимися условно независимыми свидетельствами, поддерживающими исходные гипотезы являются: Е1 – “наличие прибыли у фирмы” и Е2– “своевременный расчет с бюджетом”.

В процессе сбора фактов вероятности гипотез будут повышаться, если факты поддерживают их или уменьшаться, если опровергают их. Предположим, что мы имеем только одно свидетельство E1 (то есть с вероятностью единица наступил факт E1). Наблюдая E1 мы вычисляем апостериорные вероятности для гипотез согласно формуле Байеса для одного свидетельства:

.

Таким образом

,

,

 

После того как E1 произошло доверие к гипотезам H1 и H3 понизилось, в то время как доверие к H2 возросло. В тех случаях, когда имеются факты, подтверждающие как событие E1, так и событие E2, то апостериорные вероятности исходных гипотез также могут быть вычислены по правилу Байеса:

.

Так как события E1 и E2 условно независимые при данных гипотезах Hi, то формулу Байеса можно переписать в виде:

.

Откуда

 

Хотя исходным ранжированием было H1, H2, и H3, только H1 и H2 остались после получения свидетельств E1 и E2. При этом H1, более вероятно, чем H2.На этом примере мы рассмотрели процесс распространения вероятностей по элементам ЭС при поступлении в неё тех или иных свидетельств.

Однако реально, распространение вероятностей происходит поэтапно с суммированием отдельных свидетельств и их влияния на условную вероятность по мере поступления отдельных Ei. Это можно сделать, используя априорные и апостериорные вероятности, следующим образом:

1. Задаём p(Hi) – априорную вероятность событий Hi.

2. Для полученных свидетельств Ej записываем p(Ej | Hi).

3. С учётом теоремы Байеса подсчитываем p(Hi | Ej) в зависимости от исхода Ej, то есть вычисляем апостериорную вероятность события Hi.

4. Теперь можно не обращать внимания на все наступившие Ej и переобозначить текущую апостериорную вероятность события Hi, как новую априорную вероятность Hi. Итак, пусть p(Hi) равна p(Hi|Ej) в зависимости от значения Ej.

5. Затем выберем новое свидетельство для рассмотрения и перейдём к п.2.

Проиллюстрируем эту последовательность на приведенном выше примере в предположении, что сначала поступило свидетельство E2. Тогда:

 

Полученные вероятности можно принять за новые апостериорные вероятности гипотез H1, H2, и H3, то есть:

 

И если теперь дополнительно поступит свидетельство E2, то новые апостериорные вероятности гипотез могут быть вычислены только на основе вновь поступившего свидетельства:

 

Из приведенного примера видно, что итерационная процедура последовательного распределения вероятностей по мере поступления свидетельств позволяет получить результаты аналогичные непосредственному применению правила Байеса для случая одновременного двух поступивших свидетельств.

<== предыдущая лекция | следующая лекция ==>
Лекция № 14. Методы логического вывода в ЭС | Лекция № 15. Инструментальные средства для построения ЭС.
Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 634; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.