КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вопрос 5. Магистрально-модульный принцип построения микропроцессорных систем. Шинная организация микропроцессорных систем. Типовые структуры
Большинство современных микропроцессорных систем построено по магистрально-модулъному принципу. В соответствии с этим принципом память и подсистема ввода/вывода (ВВ) выполняются в виде отдельных функционально законченных модулей, которые подключаются к единой внутрисистемной магистрали. В подсистеме памяти выделяют модули постоянных запоминающих устройств (ПЗУ), которые используются для хранения программ и констант, модули оперативных запоминающих устройств (ОЗУ), предназначенных для хранения переменных и загружаемого извне программ. В составе подсистемы ВВ в простейшем случае выделяются адресуемые МП буферные схемы и регистры – порты ввода/вывода. Они предназначены для связи с простыми внешними устройствами, такими как светодиодные индикаторы, переключатели и т.п. Более сложные модули подсистемы ввода/вывода, предназначенные для управления внешним интерфейсным оборудованием и реализации специальных функций ввода/вывода, строятся на основе портов ввод/вывод и называются адаптерами или контроллерами периферийных устройств. Наиболее сложными из модулей подсистемы ввода/вывода являются процессоры (сопроцессоры) ввода/вывода, которые работают по собственным программам, хранящимся в памяти, и по сути дела представляют собой отдельные микропроцессорные системы. Все модули микропроцессорной системы подключаются к системной магистрали, служащей единственным трактом для потоков команд, данных и управления, т.е. общей шиной. Наличие общей шины существенно упрощает реализацию системы, позволяет легко менять ее состав и конфигурацию. Благодаря этим свойствам шинная организация получила широкое распространение в микропроцессорных системах. Вместе с тем, именно с шиной связан и основной недостаток этой архитектуры: в каждый момент передавать информацию по шине может только одно устройство. Основную нагрузку на шину создают обмены между процессором и памятью, связанные с извлечением из памяти команд и данных и записью в память результатов вычислений. На операции ввода/вывода остается лишь часть пропускной способности шины. Практика показывает, что даже при достаточно быстрой шине для 90% приложений этих остаточных ресурсов обычно не хватает, особенно в случае ввода или вывода больших массивов данных. Поэтому при сохранении фон-неймановской концепции последовательного выполнения команд программы шинная архитектура в чистом ее виде оказывается недостаточно эффективной. Более распространена архитектура с иерархией шин, где помимо системной шины имеется еще несколько дополнительных шин. Они могут обеспечивать непосредственную связь между устройствами с наиболее интенсивным обменом, например процессором и кэш-памятью. Другой вариант использования дополнительных шин – объединение однотипных устройств ввода/вывода с последующим выходом с дополнительной шины на системную. Это позволяет снизить нагрузку на общую шину и более эффективно расходовать ее пропускную способность. Наибольшее распространение получили микропроцессорные системы с одной шиной, с двумя или тремя видами шин. В структурах с одной шиной имеется одна системная шина, обеспечивающая обмен информацией между процессором и памятью, а также между устройствами ввода/вывода, с одной стороны, и процессором либо памятью – с другой. Для такого подхода характерны простота и низкая стоимость. Однако одношинная организация не в состоянии обеспечить высокую скорость обмена, причем узким местом становится именно шина. Хотя контроллеры устройств ввода/вывода могут быть подсоединены непосредственно к системной шине, больший эффект достигается применением одной или нескольких шин ввода/вывода. Устройства ввода/вывода подключаются к шинам ввода/вывода, которые берут на себя основной обмен, не связанный с выходом на процессор или память. Подключение осуществляется с помощью адаптеров шин, которыеобеспечивают буферизацию данных при их пересылке между системной шиной и контроллерами устройств ввода/вывода. Это позволяет микропроцессорной системе поддерживать работу множества устройств ввода/вывода и одновременно развязать обмен информацией по тракту процессор-память и обмен информацией с устройствами ввода/вывода. Подобная схема существенно снижает нагрузку на скоростную шину процессор-память и способствует повышению общей производительности микропроцессорной системы. Для подключения быстродействующих периферийных устройств в систему шин может быть добавлена высокоскоростная шина расширения. Шины ввода/вывода подключаются к шине расширения, а уже с нее через адаптер к шине процессор-память. Схема еще более снижает нагрузку на шину процессор-память. Такую организацию шин называют архитектурой с «пристройкой» (mezzanine architecture). В зависимости от способа подключения отдельных модулей микропроцессорной системы к системной магистрали различают три типовые структуры микропроцессорных систем: 1) магистральная; 2) магистрально-каскадная; 3) магистрально-радиальная. В магистральной структуре все модули подсистем памяти и ввода/вывода подключаются непосредственно к системной магистрали. Это наиболее простая структура. Недостатками магистральной структуры являются: 1) все модули должны поддерживать протокол обмена по системной магистрали и содержать средства сопряжения с ней, которые в зависимости от микропроцессора могут быть достаточно сложными; 2) небольшое быстродействие, т.к. медленные периферийные устройства могут надолго занимать системную магистраль. В магистрально-каскадной и магистрально-радиальной структурах отдельные модули подключаются с помощью специальных контроллеров (адаптеров) шин, основное назначение которых – реализовать приоритетные соотношения при использовании магистрали. В магистрально-каскадной структуре отдельные модули подключаются к контроллеру шины с помощью дополнительного общего канала, например, магистрали или шины ввода/вывод а, т.е. по магистральной схеме. В магистрально-радиальной структуре каждый модуль подключается к контроллеру шины с помощью индивидуального канала, т.е. по радиальной схеме.
Дата добавления: 2014-01-13; Просмотров: 3883; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |