КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
История волоконно-оптических систем связи
По современным воззрениям, все электромагнитные излучения, в том числе радиоволны и видимый свет, имеют двойственную структуру и ведут себя то как волнообразный процесс в непрерывной среде то как поток частиц, получивших название фотонов, или квантов. Каждый квант обладает определенной энергией. Представление о свете как о потоке частиц впервые ввел Ньютон. В 1905 году А. Эйнштейн на основе теории Планка возродил в новой форме корпускулярную теорию света, которая сейчас называется квантовой теорией света. В 1917 году он теоретически предсказал явление вынужденного или индуцированного излучения, на базе использования которого впоследствии и были созданы квантовые усилители. В 1951 году советские ученые В. А. Фабрикант, М. М. Вудынский и Ф. А. Бутаева получили авторское свидетельство на открытие принципа действия оптического усилителя. Несколько позднее, в 1953 году предложение о квантовом усилителе было сделано Вебером. В 1954 г. Н. Г. Басов и А. М. Прохоров предложили конкретный проект молекулярного газового генератора и усилителя с теоретическим обоснованием. Независимо к идее аналогичного генератора пришли Гордон, Цейгер и Таунс, опубликовавшие в 1954 году сообщение о создании действующего квантового генератора на пучке молекул аммиака. Несколько позднее в 1956 г. Бломберген установил возможность построения квантового усилителя на твердом парамагнитном веществе, а в 1957 году такой усилитель был построен Сковелем, Фехером и Зайделем. Все квантовые генераторы и усилители, построенные до 1960 г., работали в СВЧ диапазоне и получили название мазеров. Это название происходит от первых букв английских слов «Microwave amplification by stimulated emission of radiation», что означает «усиление микроволн с помощью вынужденного излучения». Следующий этап развития связан с перенесением известных методов в оптический диапазон. В 1958 году Таунс и Шавлов теоретически обосновали возможность создания оптического квантового генератора (ОКГ) на твердом теле. В 1960 году Мейман построил первый импульсный ОКГ на твердом теле - рубине. В этом же году вопрос об ОКГ и квантовых усилителях независимо был проанализирован Н. Г. Басовым, О. Н. Крохиным и Ю. М. Поповым. В 1961 году Джанаваном, Беннетом и Эрриотом был создан первый газовый (гелий-неоновый) генератор. В 1962 г. был создан первый полупроводниковый ОКГ. Оптические квантовые генераторы (ОКГ) получили название лазеров. Термин «Лазер» образовался в результате замены буквы «м» в слове мазер на букву «л» (от английского слова «light - свет»). После создания первых мазеров и лазеров начались работы, направленные на их использование в системах связи. Волоконная оптика, как оригинальное направление техники, возникла в начале 50-х годов. В это время научились делать тонкие двухслойные волокна из различных прозрачных материалов (стекло, кварц и др.). Еще раньше было предсказано, что если соответствующим образом выбрать оптические свойства внутренней («сердечника») и наружной («оболочки») частей такого волокна, то луч света, введенный через торец в сердечник, будет только по нему и распространяться, отражаясь от оболочки. Даже если волокно изогнуть (но не слишком резко), луч будет послушно удерживаться внутри сердечника. Таким образом, световой луч - этот синоним прямой линии, - попадая в оптическое волокно, оказывается способным распространяться по любой криволинейной траектории. Налицо полная аналогия с электрическим током, текущим по металлическому проводу, поэтому двухслойное оптическое волокно часто называют светопроводом или световодом. Стеклянные или кварцевые волокна, толщиной в 2-3 раза больше человеческого волоса, очень гибки (их можно наматывать на катушку) и прочны (прочнее стальных нитей того же диаметра). Однако световоды 50-х годов были недостаточно прозрачны, и при длине 5-10 м свет в них полностью поглощался. В 1966 г. была высказана идея о принципиальной возможности использования волоконных световодов для целей связи. Технологический поиск завершился успехом в 1970 г. - сверхчистое кварцевое волокно смогло пропустить световой луч на расстояние до 2 км. По сути дела, в том же году идеи лазерной связи и возможности волоконной оптики «нашли друг друга», началось стремительное развитие волоконно-оптической связи: появление новых методов изготовления волокон; создание других необходимых элементов, таких как миниатюрные лазеры, фотоприемники, оптические разъемные соединители и т. п. Уже в 1973-1974 гг. расстояние, которое луч мог пройти по волокну, достигло 20 км, а к началу 80-х годов превысило 200 км. К этому же времени скорость передачи информации по ВОЛС возросла до невиданных ранее значений - в несколько миллиардов бит/с. Дополнительно выяснилось, что ВОЛС имеют не только сверхвысокую скорость передачи информации, но и обладают целым рядом других достоинств. Световой сигнал не подвержен действию внешних электромагнитных помех. Более того, его невозможно подслушать т. е. перехватить. Волоконные световоды имеют отличные массогабаритные показатели: применяемые материалы имеют малую удельную массу, нет нужды в тяжелых металлических оболочках; простота прокладки, монтажа, эксплуатации. Волоконные световоды можно закладывать в обычную подземную кабельную канализацию, можно монтировать на высоковольтных ЛЭП или силовых сетях электропоездов и вообще совмещать их с любыми другими коммуникациями. Характеристики ВОЛС не зависят от их длины, от включения или отключения дополнительных линий - в электрических же цепях все это не так, и каждое подобное изменение требует кропотливых настроечных работ. В волоконных световодах в принципе невозможно искрение, и это открывает перспективу использования их во взрывоопасных и подобных им производствах. Очень важен и стоимостной фактор. В конце прошлого века волоконные линии связи, как правило, по стоимости были соизмеримы с проводными линиями, но с течением времени, учитывая дефицит меди, положение непременно изменится. Эта убежденность основана на том, что материал световода - кварц - имеет неограниченный сырьевой ресурс, тогда как основу проводных линий составляют такие теперь уже редкие металлы, как медь и свинец.
Дата добавления: 2014-01-13; Просмотров: 710; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |