КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Энергия электромагнитного поля
1.9.1. Основные гипотезы. Энергия представляет собой количественную меру движения материи. Закон сохранения энергии – один из фундаментальных законов природы. Явления электромагнетизма также подчиняются этому закону. В равной степени электромагнитное поле подчиняется закону сохранения массы, связанной с энергией универсальным соотношением W = mc 2, и закону сохранения импульса. Поэтому, рассматривая в дальнейшем энергетические характеристики движущегося электромагнитного поля, будем иметь в виду, что аналогичные соотношения справедливы для массы поля, являющейся важнейшим свойством материи, и импульса поля. Известно, что закон сохранения энергии в механике используется для решения многих задач о движении и состоянии тел. Формулы для кинетической и потенциальной энергии дают возможность описать характерные особенности перехода механической системы из одного состояния в другое, не вникая в детальное описание этого процесса. Можно утверждать, что соотношения, определяющие сохранение энергии электромагнитного поля, столь же полезны для анализа электромагнитных процессов, как и соответствующие формулы в механике. Говоря о реальности электромагнитного поля, подразумевают, что с полем связана энергия. Изменяясь, поле может отдавать энергию какому-либо неэлектромагнитному процессу, а также отбирать энергию. Величину энергии электромагнитного поля, запасённой в некотором объёме V, принято обозначать буквой W. Объемная плотность энергии электромагнитного поля обозначают через w. Макроскопическая теория поля основана (кроме уравнений Максвелла) на следующих понятиях, устанавливающих связь между векторами поля и его энергетическими характеристиками: 1. Электромагнитная энергия распределена в пространстве с объемной плотностью: w = w э + w м, (1.39) где w э – объемная плотность энергии электрического поля, а w м – объемная плотность энергии магнитного поля, которые определяются по следующим формулам: . (1.40) Величина w имеет размерность Дж/м3 или Вт×с/м3. Энергия электромагнитного поля, запасённая в объёме V, вычисляется по следующей формуле: , [Дж]. 2. Плотность потока электромагнитной энергии равна векторному произведению напряженностей электрического и магнитного полей: , (1.41) где – вектор Пойнтинга, указывающий направление движения энергии и равный по величине плотности ее потока. Плотность потока энергии равнозначна плотности мощности, т.е. мощности электромагнитной волны, проходящей через единичную площадку, перпендикулярную направлению ее распространения. Размерность вектора Пойнтинга Вт/м2. Объемная плотность энергии w характеризует состояние электромагнитного поля в данной точке пространства, а вектор Пойнтинга – волновое движение поля через эту точку. При этом скорость переноса энергии электромагнитной волной определяется по следующей формуле: . (1.42) 1.9.2. Баланс энергии электромагнитного поля. Пусть сторонние источники , возбуждающие электромагнитное поле во всём пространстве, находятся в конечном объёме V, ограниченном поверхностью S. Тогда для этого объёма имеет место соотношение, называемое теоремой Умова-Пойнтинга в интегральной форме , (1.43) где Р ст– мощность сторонних источников в объёме V; Р п – мощность тепловых потерь в объёме V; Рå – мощность излучения из V, она характеризует обмен энергией между объёмом V и окружающей средой; W – величина энергии, запасенной в V. Величины, входящие в формулу (1.43), связаны с векторами электромагнитного поля следующими соотношениями: , , , (1.44) де Р ст, Р п, Р S измеряются в Вт. Формула (1.43) выражает баланс мощности (энергии) в ограниченном объёме V. Из этого соотношения следует, что мощность сторонних источников расходуется на мощность потерь, мощность излучения из объема V и мощность, расходуемую на изменением энергии, запасённой в объеме V.
1.9.3. Баланс энергии монохроматического поля. В случае монохроматических полей мгновенные значения плотности энергии и мощности меняются периодически в каждой точке пространства. Физическую сущность процесса позволяют установить средние за период значения энергетических характеристик электромагнитного поля, которые будем обозначать с помощью индекса «ср». Для монохроматических полей имеет место уравнение баланса комплексной мощности (1.45) где Рn ср – средняя за период мощность джоулевых потерь; – комплексная мощность излучения через замкнутую поверхность S, ограничивающую объём V; – комплексная мощность сторонних источников, расположенных в объёме V; W э ср, W м ср – средние за период значения электрической и магнитной энергии, запасённой в объёме V. Величины, входящие в (1.45), связаны с комплексными амплитудами векторов электромагнитного поля следующими соотношениями: , , , ,. В последних соотношениях знак (*) означает комплексно-сопряжённую величину. Комплексный вектор Пойнтинга определяется формулой . (1.46) Вещественная часть комплексного вектора Пойнтинга равна среднему за период значению вектора Пойнтинга , которое можно рассматривать как среднюю за период плотность потока энергии (мощности). Отделяя в соотношении (1.45) действительную часть и мнимую часть, получаем следующие соотношения: Р ст ср= Рn ср+ Р åср, (1.47) . (1.48) Соотношение (1.47) является уравнением баланса для средней за период (активной) мощности, а соотношение (1.48) – уравнением баланса реактивной мощности. При этом , . (1.49) Из формулы (1.47) следует, что средняя за период мощность сторонних источников расходуется на среднюю мощность потерь и среднюю мощность излучения. Сравнив уравнения (1.43) и (1.47), обнаружим отсутствие в (1.47) слагаемого, соответствующего изменению запаса энергии в рассматриваемом объеме. Это объясняется тем, что в гармонически изменяющемся поле средняя плотность энергии в каждой точке неизменна, так как в каждой точке напряженности поля периодически принимают одни и те же значения. Из формулы (1.48) следует, что реактивная мощность сторонних источников «складывается» из реактивной мощности излучения (реактивный поток энергии через границу S) и величины, пропорциональной разности средних за период энергий магнитного и электрического полей, запасенных в рассматриваемом объеме. Скорость волны в линейной среде, как и скорость света, не зависит от интенсивности полей; следовательно, она одинакова во всех точках и неизменна в течение периода колебания. Поэтому из формулы (1.42) следует, что , (1.50) где w ср – средняя объемная плотность энергии волны, которая складывается из средней объемной плотности электрической w эср и магнитной w мср энергии. При этом . Из формулы (1.50) следует, что энергетическая скорость гармонической волны равна отношению среднего вектора Пойнтинга к средней объемной плотности энергии волны.
Раздел 2
Дата добавления: 2014-01-13; Просмотров: 5782; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |