КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Получение метана
При переработке сырья в анаэробных условиях получается смесь газов – метана и углекислоты, которые образуются в результате разложения сложных субстратов при участии смешанной популяции микроорганизмов разных видов. Поскольку искомый продукт – это газ, сбор его не составляет труда: он просто выделяется в виде пузырьков. Иногда при более сложных способах его использования или распределения по трубам возникает необходимость в его очистке от примесей или компрессии. В анаэробном реакторе можно перерабатывать самое разнообразное сырье: отходы сельского хозяйства, стоки перерабатывающих предприятий, содержащие сахар; жидкие отходы, образующиеся на сахарных заводах; бытовые отходы; сточные воды городов и спиртзаводов. Весьма важно, что сырье с высоким содержанием целлюлозы не так просто использовать для иных целей: оно дешево или вообще не имеет коммерческой ценности. Обычно масштабы переработки невелики (в пределах одной фермы или деревни), хотя были разработаны и проекты более крупных установок для переработки стоков или же промышленных отходов. Неочищенный биогаз обычно используют для приготовления пищи и освещения. Его можно применять как топливо в стационарных установках, вырабатывающих электроэнергию. Сжатый газ в баллонах пригоден как горючее для машин и тракторов. Очищенный биогаз ничем не отличается от метана из других источников, т.е. природного газа. Нередко, особенно в развитых странах, биореакторы используют главным образом для переработки отходов. Установки для производства биогаза по принципу возрастания объема можно сгруппировать следующим образом: 1. Реакторы в сельской местности в развивающихся странах (обычно имеют объем 1-20 м3); 2. Реакторы на фермах развитых стран (50-500 м3); 3. Реакторы, перерабатывающие отходы промышленности (например, сахарных, спиртовых заводов и т.п., объем 500-10000 м3); 4. Свалки бытовых и промышленных отходов (объем 1-20•106 м3). Детали технического устройства таких систем могут сильно различаться. Так, существует несколько конструкций небольших реакторов – от простейшей бродильной ямы в грунте с фиксированным объемом газа до подземных или полуподземных баков с металлическим или резиновым накопителем газа с изменяющимся объемом. Конструкция таких устройств определяется типом перерабатываемого сырья. Задача заключается в том, чтобы не допустить потери микроорганизмов при работе систем. Это достигается либо путем повторного их использования, либо помещением в реактор поддерживающего субстрата, на котором и растут клетки. Переработка сырья в метан происходит в ходе сложных взаимодействий в смешанных популяциях микроорганизмов. По особенностям обмена веществ их можно подразделить на три основные группы: первая осуществляет первичный распад полимерных веществ, вторая образует летучие жирные кислоты, а третья – метан. В осуществлении первой стадии процесса принимают участие разнообразные анаэробные бактерии, превращающие в растворимые вещества множество соединений, включая целлюлозу, жиры и белки. Ключевую роль при этом играют процессы разложения целлюлозы, так как большинство видов сырья или сточных вод обогащены лигноцеллюлозой. По оптимальной температуре жизнедеятельности эти бактерии можно отнести к одной из трех групп: термофильным организмам, живущим при 50-60 0С; мезофильным (30-40 0С); психрофильным, предпочитающим комнатную температуру (около 20 0С). Большая часть исследований была выполнена для реакторов, работающих на основе мезофилов. При повышенной температуре скорость распада исходного сырья, особенно целлюлозы, увеличивается, а это – важное преимущество. Скорость образования метана лимитируется интенсивностью процессов разложения сырья. Поэтому время удержания при работе с некоторыми субстратами бывает значительным. Время удержания можно уменьшить, если повысить температуру, но это требует энергозатрат. Для получения тепла можно сжигать часть получаемого метана. Можно использовать и тепловые отбросы сопутствующих производств (например воду, использованную для охлаждения). Горячую воду можно получать и с помощью солнечных батарей. Бактерии, работающие на первом этапе, лучше всего растут при рН от 6 до 7. В культуре рост многих разлагающих целлюлозу бактерий подавляется по механизму обратной связи при накоплении конечных продуктов гидролиза, однако в смешанной популяции бактерий, существующей в анаэробном реакторе, происходит быстрое усвоение этих продуктов и подавление не так выражено. В результате скорость разрушения полимеров оказывается выше, чем можно было бы ожидать. Конечные продукты, обладающие свойствами ингибитора, удаляются с помощью бактерий второй группы, которые превращают различные сахара, аминокислоты и жирные кислоты в летучие жирные кислоты, СО2 и водород. В ходе этого процесса образуется ряд летучих кислот (молочная, уксусная, пропионовая и др.), но главным субстратом при синтезе метана является уксусная кислота. Метанобразующие бактерии могут также синтезировать метан из СО2 и Н2. Оптимум рН для них тот же (6-7), что и для бактерий первой группы, и это важно, поскольку нарушение баланса образования и потребления кислот приведет к падению рН, если система не обладает достаточными буферными свойствами. Всякое падение рН по этой причине преимущественно сказывается на активности метанобразующих бактерий, что вызывает дальнейшее закисление среды и прекращение образования метана. С этим можно бороться, добавляя известняк и аммиачную воду, но при внесении ионов аммония следует соблюдать осторожность. Метанобразующие бактерии могут использовать аммонийные ионы как источник азота, но при высоких концентрациях азот ингибирует рост бактерий. При образовании метана, когда субстратом является глюкоза, весовой выход газа составляет около 27%, а выход энергии (теоретически) – более 90%. Однако на практике из-за сложного состава сырья, перерабатываемого в анаэробных реакторах и низкой эффективности его переработки валовый выход энергии составляет от 20 до 50%. Состав газа существенно изменяется в зависимости от условий в реакторе, а также от природы подаваемого в него сырья. Теоретически при переработке углеводов на СО2 и метан эти газы должны образовываться в равных количествах. На самом деле не весь СО2 выделяется в виде газа, так как он растворяется в воде и может взаимодействовать с гидроксилионами с образованием бикарбонатов. Концентрация образующегося бикарбоната будет зависеть от скорости потока жидкости, рН, температуры и содержания в жидкой фазе ионов металлов и других веществ. Количество образующегося бикарбоната сильно зависит от содержания белка в сырье: чем оно больше, тем богаче биогаз метаном. Обычно биогаз содержит 60-70% метана. Он образуется со скоростью 0,5 м3 на килограмм сухой массы летучих компонентов; время удержания составляет около 15 суток. В последних сообщениях об установках, перерабатывающих биомассу разного качества, приводятся выходы от 0,17 до 0,4 м3 метана на килограмм сухой массы сырья. Скорость загрузки при этом составляет от 1 до 10 кг сырья на кубометр реактора в сутки, время удержания 10-40 суток, а глубина переработки субстрата от 20% до более чем 70%. Повышение выхода за счет увеличения содержания энергии в продукте будет способствовать повышению валового производства энергии реактором. К сожалению, это не говорит о чистом выходе энергии, который будет существенно ниже, так как возрастут энергозатраты.
Дата добавления: 2014-01-14; Просмотров: 520; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |