КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Виды трения
По ГОСТ 27674–88, различают два основных вида трения: – трение без смазочного материала; – трение со смазочным материалом. Особенно опасным считают трение ювенильных (обнаженных) поверхностей. Оно относится к трению без смазочного материала и характеризуется непосредственным взаимодействием между твердыми телами при отсутствии между ними третьей фазы (например, оксидной пленки), способной выполнять смазочную функцию. Ювенильная поверхность несет значительный запас свободной поверхностной энергии и, следовательно, характеризуется высокой адсорбционной способностью. Коэффициент трения при взаимодействии ювенильных поверхностей достигает 6–7 единиц и сопровождается схватыванием поверхностей (заеданием). Металлическая поверхность может сохранять ювенильные свойства лишь в условиях высокого вакуума или в атмосфере инертного газа, что встречается при износе деталей в случаях, когда отделяются оксидные пленки и твердые тела вступают в непосредственный контакт. Такое явление наиболее часто имеет место при трении деталей из однородных материалов, например, сталь по стали. При сухом трении смазочный материал между трущимися поверхностями практически отсутствует. При этом наблюдается механическое зацепление микронеровностей и молекулярное взаимодействие поверхностей в зонах контакта. В этом случае сила трения выражается законом Амонтона–Кулона: (2.2) где N — нормальная сила; f — коэффициент трения скольжения. Коэффициент f зависит от величины микро– и макронеровностей поверхностей, скорости относительного их скольжения, физических свойств трущихся материалов и температуры. Величина коэффициента трения f “чистых” металлов для металлических пар лежит в пределах от 0,06 до 0,20. При граничном (полусухом, полужидкостном) трении молекулы масла адсорбируются кристаллической решеткой металла, образуя несколько слоев упорядоченных молекул, толщиной около 0,1 мкм. Это позволяет несколько снизить пластические деформации металлов и уменьшать, таким образом, крайне негативные последствия сухого трения. При жидкостном трении контакт поверхностей заменяется трением слоев смазки. Коэффициент трения выражается соотношением: , (2.3) где A — коэффициент пропорциональности; — коэффициент динамической вязкости; V — скорость относительного перемещения; N — нормальная сила. Различают жидкостное и граничное трение со смазочным материалом. Жидкостное трение имеет место при наличии промежуточного слоя смазки, полностью разделяющего трущиеся поверхности. Процессы трения и изнашивания характеризуются при этом не материалом трущихся деталей, а вязкостью смазочного слоя, конструкцией и режимом работы соединения. Толщина слоя смазки, м, (2.4) где — диаметр вала, м; — абсолютная вязкость масла, Нc/м2; — частота вращения вала, с-1; — удельная нагрузка на вал, Н/м2; — зазор (разность диаметров подшипника и вала), м; — поправка на конечную длину подшипника. При уменьшении толщины масляного слоя трущиеся поверхности сближаются. Когда в процессе сближения достигается такое положение, при котором они разделяются не слоем смазки, а масляной пленкой молекулярной толщины, наступает граничное трение. Граничное трение возникает под действием молекулярных сил трущихся поверхностей, смазочное вещество прочно адсорбируется на поверхностях трения. Полярные концы молекул смазочного вещества образуют на поверхностях трения «молекулярный частокол». Граничная фаза масляной пленки, находясь под двусторонним воздействием молекулярных сил, приобретает: квазитвердое состояние с расклинивающим давлением, оказывающим сильное сопротивление образованию металлического контакта; скользкое состояние, напоминающее мыло, смоченное водой. Указанные свойства предохраняют трущиеся поверхности от разрушения. При жидкостном трении контакта трущихся поверхностей вообще не должно быть, равно как и их изнашивания. Согласно гидростатической теории смазки, пусть даже без непосредственного контакта, незначительный износ поверхностей все же наблюдается в результате физико–химических, в том числе и электростатических процессов, возникающих между трущимися поверхностями, и контакта их со смазочным материалом. В соответствии с ГОСТ 27674–88 различают три вида изнашивания (рисунок 2.3). Механическое изнашивание (Mechanical wear) возникает в результате механических воздействий. Наиболее распространенным видом механического изнашивания является абразивное изнашивание. Абразивное изнашивание (Abrasive wear) — это механическое изнашивание материала в результате режущего или царапающего действия твердых тел или твердых частиц. При попадании твердых абразивных частиц на трущиеся поверхности происходит царапание поверхности с образованием стружки. Царапание — это образование углублений на поверхности трения в направлении скольжения при воздействии выступов твердого тела или твердых частиц. Абразивные частицы могут попадать из окружающей атмосферы, при недостаточной фильтрации смазки или образовываться при разрушении микрообъемов трущихся поверхностей. Примером чисто абразивного изнашивания является изнашивание тормозных накладок и барабанов или дисков, шкворневых соединений, рессорных шарниров автомобиля. Гидроабразивное и газоабразивное (Hydroabrasive (gasoabrasive) wear) изнашивание является разновидностью абразивного изнашивания и происходит в результате действия твердых тел или твердых частиц, увлекаемых потоком жидкости (газа). Примером гидроабразивного изнашивания является износ элементов шестеренчатых масляных насосов, трубопроводов, плунжерных пар топливной аппаратуры, а газоабразивного — цилиндров компрессора, воздушных жиклеров карбюратора. Гидроэрозионное (газоэрозионное) (Hydroerosive (gaserosive) wear) изнашивание происходит в результате воздействия на материал потока жидкости (газа). Газоэрозионное изнашивание можно наблюдать на рабочих поверхностях тарелок выпускных клапанов двигателя, на зеркале цилиндров двигателя, а гидроэрозионное изнашивание — на поверхности жиклеров карбюратора. Кавитационное изнашивание (Cavitations wear) — это механическое изнашивание при движении твердого тела относительно жидкости, при котором пузырьки газа захлопываются вблизи поверхности, что создает высокое местное ударное давление или высокую температуру. Очень характерная картина кавитационного изнашивания на лопастях и корпусе водяного насоса двигателя. Усталостное изнашивание (Fatigue wear) — это механическое изнашивание в результате усталостного разрушения при повторном деформировании микрообъемов материала поверхностного слоя. Усталостное изнашивание может происходить как при трении качения, так и при трении скольжения. Например, на беговых дорожках подшипников, поверхности зубьев шестерен, кулачков и т.д. Изнашивание при фреттинге (Fretting wear) — это механическое изнашивание соприкасающихся тел при колебательном относительном микросмещении. Например: изнашивание мест контакта вкладышей шеек коленчатого вала и постели в картере и крышке. Изнашивание при заедании (Adhesive wear) происходит в результате схватывания, глубинного вырывания материала, переноса его с одной поверхности на другую и воздействия возникших неровностей на сопряженную поверхность. Оно приводит к задирам, заклиниванию и разрушению механизмов. Такое изнашивание обусловливается наличием местных контактов между трущимися поверхностями, на которых вследствие больших нагрузок и скоростей происходит разрыв масляной пленки, сильный нагрев и “сваривание” частиц металла. При дальнейшем относительном перемещении поверхностей происходит разрыв связей. Типичный пример — заклинивание коленчатого вала, поршневых колец. Коррозионно–механическое изнашивание (Mechanocorrosive wear) бывает при окислительном изнашивании и фретинг–коррозии. При окислительном изнашивании (Oxidative wear) преобладает химическая реакция материала с кислородом или окисляющей окружающей средой. Вследствие окисления материала кислородом образуются тонкие пленки, которые затем удаляются с поверхности трения механическим трением, а обнажающиеся поверхности опять окисляются. Такое изнашивание наблюдается на деталях цилиндропоршневой группы, тормозной системы с гидроприводом, гидроусилителе рулевого управления. Изнашивание при фреттинг–коррозии (Fretting corrosion wear) возникает при малых колебательных относительных перемещениях соприкасающихся тел относительно друг друга в коррозионной среде, особенно в условиях вибрации. Электроэрозионное изнашивание (Electroerosive wear) проявляется в эрозионном изнашивании поверхности в результате воздействия разрядов при прохождении электрического тока, например, между электродами свечи зажигания, контактами прерывателя и т.д.
Дата добавления: 2014-01-14; Просмотров: 1532; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |