КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Коды Боуза-Чоудхури-Хоквингема (БЧХ)
Определение корректирующих свойств циклических кодов, предназначенных для коррекции многократных ошибок, сводится к определению минимального кодового расстояния этих кодов или к установлению максимальных значений кратностей гарантийно исправляемых или обнаруживаемых ошибок. Следующие две теоремы позволяют определить важнейший класс двоичных циклических кодов и установить корректирующую способность этого класса циклических кодов.
Теорема 6.1. Для любых значений l и t существует циклический код длины , исправляющий все ошибки кратности t и менее и содержащий не более проверочных символов. Формулировка этой теоремы заимствована из [1]. Следует уточнить, что при произвольном l параметр t не может быть любым. Его максимальное значение не должно превышать числа (n-1)/2, т.е. t≤2r-l-1. Пример 6.7. Найти циклические коды длины n =31, исправляющие ошибки кратности t =1, 2, 3. Определяем l. Так как 31=25-1, то l =5. Находим количество проверочных элементов для заданных значений t: Таким образом, искомые коды (31, 26), (31, 21) и (31, 16). Следует заметить, что теорема 6.1 определяет лишь существование кодов с известными корректирующими свойствами. Построение же кодов, действительно обладающих этими свойствами, зависит от правильного выбора порождающего многочлена. Теорема 6.2. Если среди корней порождающего многочлена циклического (n, k) – кода имеются корни вида то минимальное расстояние этого кода равно, по меньшей мере, d. Циклические коды, удовлетворяющие этим теоремам получили название кодов Боуза-Чоудхури-Хоквингема,или кодов БЧХ по фамилиям их авторов. Коды БЧХ - обширный класс кодов, предназначенный в первую очередь для исправления многократных ошибок. Коды БЧХ включают в свой состав коды Хэмминга и обобщают их на случай t>1. Коды БЧХ существуют над полем GF(q), где q≥2. При этом Теорема 6.1., сформулированная для случая q=2, может быть обобщена для q>2. Однако, это обобщение выходит за рамки настоящего учебного пособия. Теорема 6.2. справедлива для q≥2 и будет использована при изучении недвоичных циклических кодов. Изучение кодов БЧХ является основой для понимания других классов циклических кодов.
Дата добавления: 2014-01-14; Просмотров: 598; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |