КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Частота события. Статистическая вероятность
Замечание. Далеко не всякий опыт может быть сведён к схеме случаев. Существует обширный класс событий, вероятности которых нельзя вычислить по формуле (2.1). Примеры. 1) Несимметричная игральная кость. 2) Несимметричная монета. 3) Попадание в цель при выстреле. 4) Пробивание брони осколком снаряда и т.п. Вместе с тем каждое из перечисленных событий обладает определённой степенью объективной возможности, которую в принципе можно измерить численно и которая при повторении подобных опытов будет отражаться в относительной частоте соответствующих событий. Будем считать, что каждое событие, связанное с массой однородных опытов, - сводящееся к схеме случаев или нет, - имеет определённую вероятность, заключающуюся между нулём и единицей. Для событий, сводящихся к схеме случаев, эта вероятность может быть вычислена по формуле (2.1). Для событий, не сводящихся к схеме случаев, применяются другие способы определения вероятностей. Все эти способы основаны на эксперименте (опыте). Определение 1. Если проведена серия из опытов, в каждом из которых могло появиться или не появиться некоторое событие , то частотой события (статистической вероятностью события ) в данной серии опытов называется отношение числа опытов, в которых появилось событие , к общему числу произведённых опытов: . (3.1) Замечание 1. При небольшом числе опытов частота события носит в значительной мере случайный характер и может заметно меняться от одной группы опытов к другой. Однако при увеличении числа опытов частота стабилизируется, приближаясь с незначительными колебаниями к некоторой средней, постоянной величине. Это свойство устойчивости частот, многократно проверенное на опытах, есть одна из наиболее характерных закономерностей, наблюдаемых в случайных явлениях. Проверить этот факт на практике можно только для событий, сводящихся к схеме случаев, так как только для этих событий существует точный способ вычисления математической вероятности. Многочисленные опыты этот факт действительно подтверждают. Пример (опыт Бюффона и Пирсона). Бросание симметричной монеты.
Вполне естественно допустить, что и для событий, не сводящихся к схеме случаев, тот же закон остаётся в силе и что постоянное значение, к которому при увеличении числа опытов приближается частота наступления события, представляет собой вероятность события. Тогда частоту события при достаточно большом числе опытов можно принять за приближенное значение вероятности Математическую формулировку и доказательство этого факта представил Я. Бернулли. Он доказал, что при неограниченном увеличении числа однородных независимых опытов с практической достоверностью можно утверждать, что частота события будет сколь угодно мало отличаться от его вероятности в отдельном опыте. Замечание 2. Характер приближения частоты к вероятности при увеличении числа опытов отличается от стремления к пределу в математическом смысле. В математическом анализе означает, что разность становится меньше любого положительного числа для всех значений , начиная с некоторого достаточно большого числа. При экспериментальном определении вероятности через частоту события нет ничего физически невозможного в том, что при большом числе опытов частота события будет значительно уклоняться от его вероятности; но такое значительное уклонение является весьма маловероятным; тем менее вероятным, чем большее число опытов произведено. Пример: монета. Таким образом, при возрастании числа опытов частота приближается к вероятности, но не с полной достоверностью, а с большой вероятностью, которая при большом числе опытов может рассматриваться как практическая достоверность. Определение 2. Говорят, что величина сходится по вероятности к величине , если при сколь угодно малом вероятность неравенства при увеличении неограниченно приближается к 1: . Замечание. Применяя этот термин, можно сказать, что при увеличении числа опытов частота события сходится по вероятности к вероятности события.
Дата добавления: 2014-01-14; Просмотров: 422; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |