КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Й учебный вопрос. Методы оценивания параметров структурных моделей
Матрица коэффициентов (3) Матрица коэффициентов (2) Матрица коэффициентов (1)
Следовательно, достаточное условие идентификации не выполняется и первое уравнение нельзя считать идентифицируемым. Для второго уравнения Н = 2 (у1, у2), D = 1 (отсутствует х1) счетное правило дает утвердительный ответ: уравнение идентифицируемо D + 1 = Н. Достаточное условие идентификации выполняется. Коэффициенты при отсутствующих во втором уравнении переменных составят.
Согласно таблице определитель матрицы равен 0, а ранг матрицы равен 2, что соответствует следующему критерию: ранг матрицы коэффициентов должен быть не меньше числа эндогенных переменных в системе без одной. Итак, второе уравнение точно идентифицируемо. Третье уравнение системы содержит Н = 3 и D = 2, т. е. по необходимому условию идентификации оно точно идентифицируемо (D + 1 = Н). Противоположный вывод имеем, проверив уравнение на достаточное условие идентификации. Составим таблицу коэффициентов при переменных, отсутствующих в третьем уравнении, в которой определитель матрицы равен нулю.
Из таблицы видно, что достаточное условие идентификации не выполняется. Уравнение неидентифицируемо. Следовательно, рассматриваемая в целом структурная модель, идентифицируемая по счетному правилу, не может считаться идентифицируемой исходя из достаточного условия идентификации. Коэффициенты структурной модели могут быть оценены разными способами в зависимости от вида системы. Наибольшее распространение в литературе получили следующие методы оценивания коэффициентов структурной модели: · косвенный метод наименьших квадратов (КМНК); · двухшаговый метод наименьших квадратов (ДМНК); · трехшаговый метод наименьших квадратов (ТМНК); · метод максимального правдоподобия с полной информацией (ММП f); · метод максимального правдоподобия при ограниченной Косвенный и двухшаговый методы наименьших квадратов подробно описаны в литературе и рассматриваются как традиционные методы оценки коэффициентов структурной модели. Эти методы достаточно легкореализуемы. Косвенный метод наименьших квадратов применяется для идентифицируемой системы одновременных уравнений, а двухшаговый метод наименьших квадратов — для оценки коэффициентов сверхидентифииируемой модели. Метод максимального правдоподобия рассматривается как наиболее общий метод оценивания, результаты которого при нормальном распределении признаков совпадают с МНК. Однако при большом числе уравнений системы этот метод приводит к достаточно сложным вычислительным процедурам. Поэтому в качестве модификации используется метод максимального правдоподобия при ограниченной информации (метод наименьшего дисперсионного отношения), разработанный в 1949 г. Т. Андерсоном и Н. Рубиным. В отличие от метода максимального правдоподобия в данном методе сняты ограничения на параметры, связанные с функционированием системы в целом. Это делает решение более простым, но трудоемкость вычислений остается достаточно высокой. Несмотря на его популярность, к середине 1960-х годов он был практически вытеснен двухшаговым методом наименьших квадратов в связи с гораздо большей простотой последнего. Дальнейшим развитием двухшагового метода наименьших квадратов является трехшаговый МНК (ТМНК), предложенный в 1962 г. А. Зельнером и Г. Тейлом. Этот метод оценивания пригоден для всех видов уравнений структурной модели. Однако при некоторых ограничениях на параметры более эффективным оказывается ДМНК. Как уже отмечалось, косвенный метод наименьших квадратов используется в случае точно идентифицируемой структурной модели. Процедура применения КМНК предполагает выполнение следующих этапов работы: · структурная модель преобразовывается в приведенную форму модели; · для каждого уравнения приведенной формы модели обычным МНК оцениваются приведенные коэффициенты (); · коэффициенты приведенной формы модели трансформируются в параметры структурной модели. Если система сверхидентифицируема, то КМНК не используется, ибо он не дает однозначных оценок для параметров структурной модели. В этом случае могут применяться разные методы оценивания, среди которых наиболее распространенным и простым является двухшаговый метод наименьших квадратов. Основная идея ДМНК — на основе приведенной формы модели получить для сверхидентифицируемого уравнения теоретические значения эндогенных переменных, содержащихся в правой части уравнения. Далее, подставив их вместо фактических значений, можно применить обычный МНК к структурной форме сверхидентифицируемого уравнения. Метод получил название «двухшаговый метод наименьших квадратов», ибо МНК используется дважды: на первом шаге при определении приведенной формы модели и нахождении на ее основе оценок теоретических значений эндогенной переменной и на втором шаге применительно к структурному сверхидентифицируемому уравнению при определении структурных коэффициентов модели по данным теоретических (расчетных) значений эндогенных переменных. Сверхидентифицируемая структурная модель может быть двух типов: · все уравнения системы сверхидентифицируемы; · система содержит наряду со сверхидентифицируемыми точно идентифицируемые уравнения. Если все уравнения системы сверхидентифицируемые, то для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним находятся из системы приведенных уравнений. Заключение — до 5 мин. Несмотря на важность системы эконометрических уравнений, на практике часто не принимают во внимание некоторые взаимосвязи. Ее использование сопряжено с рядом сложностей, которые связаны с ошибками спецификации модели. Ввиду большого числа факторов, влияющих на экономические переменные, исследователь, как правило, не уверен в точности предлагаемой модели. Набор эндогенных и экзогенных переменных модели соответствует теоретическому представлению исследователя о моделируемой объекте, которое сложилось в конкретный момент времени и может позднее изменится. Содержание и методические рекомендации: - обобщить наиболее важные, существенные вопросы лекции. - сформулировать общие выводы. - поставить задачи для самостоятельной работы. - ответить на вопросы студентов.
Дата добавления: 2014-01-14; Просмотров: 481; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |