Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Й учебный вопрос. Методы оценивания параметров структурных моделей

Матрица коэффициентов (3)

Матрица коэффициентов (2)

Матрица коэффициентов (1)

Уравнение Переменные
х3 х4
  а23 0 а24 0

 

Следовательно, достаточное условие идентификации не выполняется и первое уравнение нельзя считать идентифици­руемым.

Для второго уравнения Н = 2 (у1, у2), D = 1 (отсутствует х1) счетное правило дает утвердительный ответ: уравнение иденти­фицируемо D + 1 = Н.

Достаточное условие идентификации выполняется. Коэффи­циенты при отсутствующих во втором уравнении переменных со­ставят.

Уравнение Переменные
у3 х1
  b23 -1 а11 a31

 

Согласно таблице определитель матрицы равен 0, а ранг матрицы равен 2, что соот­ветствует следующему критерию: ранг матрицы коэффициентов должен быть не меньше числа эндогенных переменных в системе без одной. Итак, второе уравнение точно идентифицируемо.

Третье уравнение системы содержит Н = 3 и D = 2, т. е. по не­обходимому условию идентификации оно точно идентифицируе­мо (D + 1 = Н). Противоположный вывод имеем, проверив уравнение на достаточное условие идентификации. Составим таблицу коэффициентов при переменных, отсутствующих в тре­тьем уравнении, в которой определитель матрицы равен нулю.

Уравнение Переменные
х3 х4
  0 a23 0 a24

Из таблицы видно, что достаточное условие идентификации не выполняется. Уравнение неидентифицируемо. Следовательно, рассматриваемая в целом структурная модель, идентифицируе­мая по счетному правилу, не может считаться идентифицируемой исходя из достаточного условия идентификации.

Коэффициенты структурной модели могут быть оценены раз­ными способами в зависимости от вида системы. Наибольшее распространение в литературе получили следующие методы оценивания коэффициентов структурной модели:

· косвенный метод наименьших квадратов (КМНК);

· двухшаговый метод наименьших квадратов (ДМНК);

· трехшаговый метод наименьших квадратов (ТМНК);

· метод максимального правдоподобия с полной информа­цией (ММП f);

· метод максимального правдоподобия при ограниченной
информации (ММП s).

Косвенный и двухшаговый методы наименьших квадратов подробно описаны в литературе и рассматриваются как традици­онные методы оценки коэффициентов структурной модели. Эти методы достаточно легкореализуемы. Косвенный метод наи­меньших квадратов применяется для идентифицируемой систе­мы одновременных уравнений, а двухшаговый метод наимень­ших квадратов — для оценки коэффициентов сверхидентифииируемой модели.

Метод максимального правдоподобия рассматривается как наиболее общий метод оценивания, результаты которого при нормальном распределении признаков совпадают с МНК. Одна­ко при большом числе уравнений системы этот метод приводит к достаточно сложным вычислительным процедурам. Поэтому в качестве модификации используется метод максимального прав­доподобия при ограниченной информации (метод наименьшего дисперсионного отношения), разработанный в 1949 г. Т. Андерсо­ном и Н. Рубиным.

В отличие от метода максимального правдоподобия в данном методе сняты ограничения на параметры, связанные с функцио­нированием системы в целом. Это делает решение более про­стым, но трудоемкость вычислений остается достаточно высо­кой. Несмотря на его популярность, к середине 1960-х годов он был практически вытеснен двухшаговым методом наименьших квадратов в связи с гораздо большей простотой последнего.

Дальнейшим развитием двухшагового метода наименьших квадратов является трехшаговый МНК (ТМНК), предложенный в 1962 г. А. Зельнером и Г. Тейлом. Этот метод оценивания приго­ден для всех видов уравнений структурной модели. Однако при некоторых ограничениях на параметры более эффективным ока­зывается ДМНК.

Как уже отмечалось, косвенный метод наименьших квадра­тов используется в случае точно идентифицируемой структурной модели. Процедура применения КМНК предполагает выполне­ние следующих этапов работы:

· структурная модель преобразовывается в приведенную фор­му модели;

· для каждого уравнения приведенной формы модели обыч­ным МНК оцениваются приведенные коэффициенты ();

· коэффициенты приведенной формы модели трансформиру­ются в параметры структурной модели.

Если система сверхидентифицируема, то КМНК не использу­ется, ибо он не дает однозначных оценок для параметров струк­турной модели. В этом случае могут применяться разные методы оценивания, среди которых наиболее распространенным и про­стым является двухшаговый метод наименьших квадратов.

Основная идея ДМНК — на основе приведенной формы мо­дели получить для сверхидентифицируемого уравнения теорети­ческие значения эндогенных переменных, содержащихся в пра­вой части уравнения. Далее, подставив их вместо фактических значений, можно применить обычный МНК к структурной фор­ме сверхидентифицируемого уравнения. Метод получил назва­ние «двухшаговый метод наименьших квадратов», ибо МНК ис­пользуется дважды: на первом шаге при определении приведенной формы модели и нахождении на ее основе оценок теоретических значений эндогенной переменной и на втором шаге применительно к структурному сверхидентифицируемому уравнению при определении структурных коэф­фициентов модели по данным теоретических (расчетных) значе­ний эндогенных переменных.

Сверхидентифицируемая структурная модель может быть двух типов:

· все уравнения системы сверхидентифицируемы;

· система содержит наряду со сверхидентифицируемыми точ­но идентифицируемые уравнения.

Если все уравнения системы сверхидентифицируемые, то для оценки структурных коэффициентов каждого уравнения исполь­зуется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним находятся из системы приведенных уравнений.

Заключение — до 5 мин.

Несмотря на важность системы эконометрических уравнений, на практике часто не принимают во внимание некоторые взаимосвязи. Ее использование сопряжено с рядом сложностей, которые связаны с ошибками спецификации модели. Ввиду большого числа факторов, влияющих на экономические переменные, исследователь, как правило, не уверен в точности предлагаемой модели. Набор эндогенных и экзогенных переменных модели соответствует теоретическому представлению исследователя о моделируемой объекте, которое сложилось в конкретный момент времени и может позднее изменится.

Содержание и методические рекомендации:

- обобщить наиболее важные, существенные вопросы лекции.

- сформулировать общие выводы.

- поставить задачи для самостоятельной работы.

- ответить на вопросы студентов.

<== предыдущая лекция | следующая лекция ==>
Й учебный вопрос. Виды структурных моделей с позиции идентификации | Гистогенез нервной ткани
Поделиться с друзьями:


Дата добавления: 2014-01-14; Просмотров: 481; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.