Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Формула Тейлора с остаточным членом в форме Лангранджа

Теорема: Пусть функция y=f(x) – n+1 раз дифференцируема в О(х0), тогда в некоторой Оε0)

#

где с лежит между х и xn

Доказательство: Применим теорему Коши о двух функциях к следующим функциям

g(x)=f(x)-Tn(x)$

g(x)=(x-x0)n+1

g(x0)=0; g’(x0)=0,…,g(n)(x0)=0; g(n+1)(x)=f(n+1)(x)

g’(x0)=(n+1)(x-x0)n|x=0=0; g(n+1)(x)=(n+1)!

[a,b]g(x);(a,b)g(x);g’(x)¹0

 

 

 

 


* o’º1 x2n+2=x·x2n+1=o(x2n+1)

# - остаточный член в форме Лангранджа

$ -Tn(x) – многочлен Тейлора

<== предыдущая лекция | следующая лекция ==>
Тема: Пять основных разложений | Общий подход
Поделиться с друзьями:


Дата добавления: 2014-01-14; Просмотров: 367; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.