Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Фотолюминесценция. Правило Стокса

Люминесценция, ее виды. Характеристики люминесценции (спектр, длительность, квантовый выход). Законы Вавилова и Стокса.

Фотопроцессы в биологических системах сопровождаются возникновением электронно-возбужденных состояний молекул. Электронно-возбужденные состояния молекул характеризуются энергией и временем жизни. Молекула не может долго находится в электронно-возбужденном состоянии и переходит в основное состояние с испусканием кванта света. Испускание света молекулой (люминесценция) происходит за время более длительное, чем время поглощения света молекулой (10-15 с). За это время с молекулой может произойти ряд изменений, определяющих изменения спектров испускания (люминесценции) по сравнению со спектрами поглощения.

По Вавилову С. И.: Люминесценция есть свечение вещества, являющееся избыточным над тепловым излучением этого вещества при данной температуре и имеющее длительность, значительно превышающую период излучаемых световых волн.

По способу возбуждения молекулы люминесценцию различают:

1. Люминесценция, вызванная заряженными частицами:

а) ионолюминесценция - ионами;

б) катодолюминесценция - электронами;

в) радиолюминесценция - ядерным излучением.

2. Люминесценция, вызванная квантами рентгеновского излучения - рентгенолюминесценция; оптического излучения - фотолюминесценция.

3. Люминесценция, вызванная электрическим полем - электролюминесценция.

4. Люминесценция, сопровождающая химическую реакцию, называется хемилюминесценцией. К ней относится биолюминесценция - видимое свечение организмов, связанное с процессами их жизнедеятельности.

По внутриатомным процессам различают люминесценцию:

а) спонтанную;

б) вынужденную;

в) рекомбинационную.

При спонтанной люминесценции излучение происходит непосредственно вслед за возбуждением. Некоторые энергетические уровни молекулы или атома могут быть метастабильными, т.е. вероятность переходов электронов с этих уровней на любые уровни с меньшей энергии очень мала. Атом или молекула может достаточно долго находится в таком электронно-возбужденном состоянии. Переход с метастабильного на основной уровень может быть ускорен путем внешнего энергетического воздействия на атом или молекулу. Например, переход атома или молекулы с метастабильного энергетического уровня на основной может инициироваться квантом излучения той же энергии, что и инициированный переход. Вызванное при этом излучение называется вынужденным (индуцированным или стимулированным), а само явление вынужденной люминесценцией. Рекомбинационной называется люминесценция, происходящая в результате рекомбинационных процессов, например, при рекомбнации электронов и ионов в газах, электронов и дырок в полупроводниках и так далее.

 

Фотолюминесценция делится на флуоресценцию (кратковременное послесвечение) и фосфоресценцию (сравнительно длительное послесвечение) (не менее 10-3 сек).

Фотолюминесценцию жидкостей и твердых тел можно наблюдать

при освещении их видимым или ультрафиолетовым светом. Примером может служить свечение обыкновенного керосина, серной кислоты, раствора флуоресцеина, зеленое свечение стекол с примесью солей урана, красное свечение стекол с примесью солей марганца, синей - с примесью солей церия. Светятся также различные краски и особые неорганические составы и минералы, которые называют фосфорами (люминофорами).

Спектр люминесценции в целом и его максимум всегда оказывается в области более длинных волн по сравнению со спектром поглощенного излучения, способного вызвать эту люминесценцию (рисунок). Это правило называется правилом Стокса.

Энергия падающего фотона hn0 расходуется на излучение (hn1) и безизлучательные процессы (A) внутри вещества:

 

hn0 = hn1 + A. (1)

 

Поэтому n1 < n0 или l1 > l0, то есть испускаемый при люминесценции свет должен иметь более длинные волны, чем поглощаемый (рис.5.). Если A = 0, то l1 = l0; в этом предельном случае испускаемый свет будет иметь ту же длину волны, что и поглощаемый. В редких случаях, при возбуждении фотолюминесценции отдельной спектральной линией (то есть монохроматическим светом, когда фотон поглощается уже возбужденной молекулой, возможен процесс, при котором испускаемый фотон уносит с собой дополнительно часть энергии молекулы. При этом испускаемый люминесценцией свет будет иметь большую частоту (меньшую длину волны): hn1 > hn0 или l1 < l. Такое излучение называется антистоксовым. Антистоксовое излучение редко, при большом числе актов поглощения и излучения наиболее вероятно испускание света с большей длиной волны по сравнению со светом поглощаемым. Поэтому максимум кривой спектра люминесценции всегда находится в области более длинных волн по сравнению с максимумом кривой спектра поглощения.

В жидких и твердых веществах спектр люминесценции не зависит от спектра возбуждающего света (или от длины волны поглощенного излучения, если оно является монохроматическим). Если в пределах спектра поглощения изменять частоту возбуждающего света, то спектр люминесценции при этом не меняется. Он характеризует люминесцирующее вещество и обусловлен природой его молекул, а не энергией возбуждающего фотона.

Энергия, затраченная на возбуждение молекул вещества, превращается в энергию излучения не полностью, а часть энергии рассходуется на различные безизлучательные процессы в веществе. Процессы, приводящие к рассеиванию энергии, называются тушением люминесценции.

 
 

 


Рис. 5. Схема, иллюстрирующая правило Стокса.

 

Полнота преобразования поглощенной энергии в энергию излучения характеризуется выходом люминесценции. Различают:

1) энергетический выход ВЭ люминесценции - отношение энергии люминесценции WЛ к поглощенной энергии Wп:

 

ВЭ ; (2)

 

2) квантовый выход BК люминесценции - отношение числа квантов

NЛ, излученных веществом, к числу NП поглощенных квантов:

 

. (3)

 

В некоторых случаях величина выхода люминесценции может быть большой; например, для флуоресцина он равен 0,76. В большинстве случаев выход люминесценции значительно меньше единицы.

 

<== предыдущая лекция | следующая лекция ==>
Инфракрасное излучение. Первичные механизмы действия инфракрасного излучения на биологические объекты. Аппараты светолечения | Флуоресценция и фосфоресценция
Поделиться с друзьями:


Дата добавления: 2014-01-14; Просмотров: 2217; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.